
Software Engineering : An International Journal (SEIJ), Vol. 3, No. 1, april 2013 41

techniques can reveal faults; but how effectively they do
that and what kind of faults they find, how much resources
they utilize, by what factor they increase the reliability,
we do not have an exact answers to such questions. Al-
though the utilization of these techniques is growing, we
have very limited knowledge about their relative quantita-
tive and qualitative statistics. Despite the large number of
studies which attempt to study the testing techniques and
its allied factors and conditions, we are not able to gener-
alize the results as studies are not complete in all respects
and vary significantly in terms of parameters they have
taken into consideration. Additionally, many existing stud-
ies show contradictory results. There is no “silver bullet"
testing approach and that no single technique alone is sat-
isfactory has been pointed out by many leading research-
ers [3]. Therefore we should use a combination of several
techniques to test software. We should select appropriate
techniques which target different types of defects. Howev-
er, many testing techniques belong to the same group and
as such target same types of defects in the program. So we
should use best candidate from each group to test a pro-
gram but do we have knowledge of relative effectiveness
and efficiency of techniques in a group? We guess, no!

It is obvious that testing technique selection and evalua-
tion remains a key issue in software testing. So the need of
the hour is to find the effective and efficient software test-
ing techniques which can attain the goal of testing to maxi-
mum possible extent while consuming fewer resources. It
would be appropriate if we first go for intra-family com-
parisons, then we can go for inter-family comparisons. As
we know no single study can be complete and perfect in
all respects, we cannot really expect one testing technique
to supersede all other techniques. Regardless of our tech-
nique, it could be wise to try to understand what types of
defects a particular technique can be expected to find and
at what cost. We have to check whether testing technique
effectiveness and efficiency depends on program to which
it is applied, subject who applies it, the number of faults in
the program or the type of faults in the program. However,
it is not sufficient if testing techniques are only compared
on fault detecting ability. They should also be evaluated
to check which among them enhances reliability. To es-
tablish a useful theory for testing, we need to evaluate

Abstract- Current scenario of software testing demands use
of effective testing techniques which are practically possible.
Though, at present, we have multitude of software testing
techniques, which can reveal faults, but we do not have all
the adequate practical information about them. Despite the
number of studies which were conducted to evaluate these
techniques, we are still without realistic and generalized re-
sults. This paper first explores the earlier studies on software
testing techniques evaluation and identifies the problems as-
sociated with them. Based on the issues in these studies, we
propose a set of guidelines which define a protocol to carry
out such studies so that the issues identified are mitigated to a
large extent. As a consequence, the results obtained are more
realistic, generalized and comparable if these guidelines are
followed while conducting the experiments.

Keywords- Comparison of Testing Techniques, Empirical
Evaluation, Evaluation Guidelines, Experimentation, Soft-
ware Testing Techniques.

1.	 INTRODUCTION

Verification and validation activities are conducted to
evaluate and enhance product quality throughout the entire
cycle of software development. Verification and validation
is a generic term which includes software testing. Soft-
ware testing is an important phase in software develop-
ment life cycle. Despite all the efforts people put in testing
the software, effectiveness of testing remains lower than
expectations. Testing is a widespread validation approach
in the industry, but it is still largely adhoc, expensive, and
unpredictably effective [1]. Unfortunately the lack of un-
derstanding of software testing usually leads to incomplete
testing work. The choice of software testing technique in
software testing influences quality of both process and the
product. Taking into account current testing problems and
failure consequences and cost associated with testing, us-
ing the most effective and efficient testing methods is most
important need in testing. We have multitude of software
testing techniques which makes testing technique selec-
tion a complex choice. When choosing a testing technique,
practitioners want to know which one will detect the faults
that matter most to them in the programs that they plan to
test [2]. Which techniques should be chosen? Are there any
particular benefits of using a specific technique? Which
techniques are effective? Which are efficient? All testing

Empirical Evaluation of Software Testing
Techniques – Need, Issues and Mitigation

Sheikh Umar Farooq, SMK Quadri
Department of Computer Sciences, University of Kashmir

suf.cs@uok.edu.in, quadrsmk@kashmiruniversity.ac.in

Farooq ET AL.: empirical evaluation of software testing techniques - need, issues and mitigation42

environments [5]. One way to avoid such failures is to go
for exhaustive testing of the system, which tests the system
with all possible combinations of inputs which includes
both valid and invalid cases. However, excluding trivial
cases, exhaustive testing is an impractical thing for most
software systems. Besides, we are often have limited time
and resources, which can limit our ability to effectively
complete testing efforts. We do not want to go for exhaus-
tive testing, rather we wants to select a testing technique in
relation to the selected test strategy that will detect maxi-
mum possible critical faults and brings the product to an
acceptable level while consuming less resources and time.
Whether we opt for static or dynamic testing, there is a
selection of testing methods to choose from. In each test-
ing method there are so many testing techniques that can
be used to test a system. Each testing technique meant for
testing has its own dimensions i.e. for what purpose it is
used, what aspect it will test, what will be its deliverables
etc. Different approaches to software development require
different testing methods and techniques [6]. This limits
our ability to use a generic technique for testing a system.
So at present we prefer to use variety of testing techniques
to test a system as it will ensure that a variety of defects are
found, resulting in more effective testing. But how long
will we use numerous testing techniques to test software.
Going this way means excessive use of resources (less ef-
ficiency), as using many testing techniques clearly implies
more test cases, more time and more resources. So the
need is to select appropriate testing techniques which can
make testing process effective and efficient. However, for
a given testing problem, there exist several techniques of
the same kind which differ by the underlying mechanism.
Among so many techniques, which are in a competition
we would like to select a technique that will detect the
maximum possible significant defects, while consuming
less resources and time. Unfortunately, it is not known
which testing technique to select as we do not have ad-
equate information about relative effectiveness, efficiency
and cost of testing techniques. [7] also states that we do
not have all the information of interest about every testing
technique. This kind of information can only be obtained
by evaluating software testing techniques. It is also neces-
sary to understand what types of defects a particular tech-
nique is expected to find and at what cost. We also need
to analyze testing technique dependencies on program to
which it is applied, subject who applies it, the number of
faults in the program or the type of faults in the program.
We should evaluate testing techniques to know about the
relative merits and limitations of each testing technique,
so that we are able to use it in appropriate scenario and for
appropriate purpose. This information is useful before one
has to implement a given testing technique; it is also useful
(as a post mortem analysis) when one is finished with test-

existing and novel testing techniques not only for defect
detection effectiveness and efficiency but also for their
ability of enhancing software reliability. In this paper, we
describe why there is a need to evaluate software testing
techniques, identify problems with the existing studies and
a framework (a set of guidelines) is proposed for carrying
out such studies so that in future such studies show results
which can be useful for testing professionals in particular
and testing industry in general.

The paper is organized as: Section 2 gives us a brief de-
scription of software testing techniques. Section 3 explains
why we should evaluate software testing techniques. Sec-
tion 4 surveys the existing research on software testing
techniques evaluation. Evaluation results of the surveyed
studies are presented in subsection 4.1 and the problems
and shortcomings with the existing studies are presented
in subsection 4.2. Current status of testing technique selec-
tion is presented in Section 5. Section 6 proposes a frame-
work (a set of guidelines) which should be taken into con-
sideration while evaluating testing techniques. Section 7
presents the conclusions and future work.

2.	 SOFTWARE TESTING TECHNQIUES

We test software by selecting appropriate testing tech-
niques and applying them. Testing techniques refer to dif-
ferent methods of testing particular features of a computer
program, system or product. By a testing technique, we
mean a method or approach that systematically describes
how a set of test cases should be created (with what inten-
tion and goals) keeping into consideration possible rules
for applying the test cases. Testing techniques aid in limit-
ing the number of test cases that need to be created, since it
will be targeting a specific type of input, path, fault, goal,
measurement etc. [4]. Test techniques provide an under-
standing of the complexities imposed by most systems.
Using testing techniques, we can reproduce tests, as it
paves the path for creating a test ware. Some techniques
are easy to apply while other techniques require a little
experience and knowledge before they can be used. We
have to understand when to use them and we should have
a clear knowledge of which ones to use in any given situa-
tion. Before utilizing different testing techniques in proper
manner for an appropriate purpose, we should have a pro-
found knowledge of these testing techniques.

3.	 WHY EVALUATE SOFTWARE TESTING TECH-
NIQUES?

Software testing should be effective enough to prevent
critical damages to the whole system for users, by taking
into consideration potential failures of the program and its

Software Engineering : An International Journal (SEIJ), Vol. 3, No. 1, april 2013 43

trying to optimize different phenomena [40]. They believe
that aggregation results are not always as conclusive as we
may desire. In effect, they aggregated results from unit-
testing experiments with the aim of identifying informa-
tion with some experimental basis that might help practi-
tioners make decisions based on extensive search in IEEE
Xplore and ACM digital libraries looking for publications
of such experiments. Juristo et al. in “A look at 25 years of
data” conclude that although results extracted so far from
the experiments conducted are interesting, however, they
seem to indicate that research in this area has focused on
specific questions and hypotheses rather than on building
a larger picture of available techniques and when to select
them [41]. In case of frameworks and methodologies [42]
describe a characterization scheme for experiments which
is specific for software testing techniques. The schema is
similar to [43] but adapted to deal with evaluating testing
techniques. [44] and [45] defined the SIR (Software Ar-
tifact Infrastructure Repository) infrastructure to support
controlled experiments with software testing techniques.
The main contribution of their work is a set of benchmark
programs that can be used to evaluate testing techniques.
[46] describe a straightforward framework for the com-
parison of the efficiency, effectiveness and applicability
of different testing techniques based on fault injection or
seeding. [47] define a general methodological framework
for evaluating software testing techniques, which focuses
on the evaluation of effectiveness and efficiency, but the
framework is very preliminary and needs significant im-
provement. We tried to include all significant experimental
studies; however, we cannot guarantee that the list is com-
plete. In addition to these, many studies are in progres-
sion, but their results are preliminary. These studies are
also not included in the list.

Our focus in this paper is on empirical evaluation of test-
ing techniques, so we will have a look at empirical stud-
ies conducted so far to evaluate testing techniques. During
the past few decades, a large number of empirical evalua-
tions of numerous testing techniques have been executed
to compare various software testing techniques. The re-
search on the comparison of testing technique traces back
to as early as 37 years ago with Hetzel making a start in
1976 by conducting a controlled experiment in order to
analyze three defect detection methods [10]. The empiri-
cal research on testing techniques is largely carried out
through experiments comparing different dynamic testing
techniques with each other or with different types of static
testing techniques usually some reading technique. Most
of the experimental studies are performed in a unit level
testing context. A laboratory setting with student subjects
is the most common design in the existing experiments. In-
dustrial studies are very rare. The most commonly studied

ing as this post-implementation assessment and analysis
is needed for subsequent improvement of the technique to
increase its effectiveness [8].

4.	 EXISTING RESEARCH ON SOFTWARE TESTING
TECHNIQUES EVALUATION

A lot of research has been carried out in the field evalua-
tion of software testing techniques. By studying the ma-
jor research results that have contributed to the growth of
software testing techniques we can analyze the maturation
of software testing techniques research. We can also assess
the change of research paradigms over time by tracing the
types of research questions and strategies used at various
stages [9]. Three directions of research have been found
related to evaluation of testing techniques:

1.	 Actual evaluations and comparisons of testing tech-
niques based either on analytical or empirical meth-
ods.

2.	 Evaluation frameworks or methodologies for com-
paring and/or selecting testing techniques.

3.	 Surveys of empirical studies on testing techniques
which have summarized available work and have
highlighted future trends.

Many experiments and case studies have been conducted
so far towards the goal of evaluation of testing techniques.
Some significant and relevant controlled experiments are
Hetzel [10], Myers [11], Basili and Selby [12], Weyuker
[13], Beiman and Schultz [14], Frankl and Weiss [15],
Hutchins et al. [16], Offutt and Lee [17], Kamsties and
Lott [18], Wong and Mathur [19], Offutt et al. [20], Frankl
et al. [21], Roper et al. [22], Wong et al. [23], Frankl and
Iakounenko [24], Rothermal and Harrold [25], Vokolos
and Frankl [26], Rothermal et al.[27], Elbaum et al. [28],
Kim et al.[29], Bible et al.[30], Graves et al.[31], Juristo
and Vegas [32], Juristo et al.[33] and many more. A com-
prehensive survey was conducted by [34] which surveys
experiments comparing software testing techniques up
to year 2004. Runeson et al. presents a survey of empiri-
cal studies on defect detection techniques which includes
experiment as well as case studies [35]. They also define
questions regarding defect detection techniques evaluation
and interpret the findings in terms of practical use. Case
studies which studied and evaluated different techniques
include Concardi et al. [36], Aurum et al [37], Host et al.
[38] and Berling and Thelin [39]. Juristo et al. in their pa-
per “In search of what we experimentally know about unit
testing” argue that aggregation of the results is not easy
because separate experiments have different settings and
subjects, tend to assess different variables, and are usually

Farooq ET AL.: empirical evaluation of software testing techniques - need, issues and mitigation44

Based on this distinction, major intra family and inter fam-
ily studies carried out till date to evaluate software testing
techniques are listed in Table 1 and Table 2 respectively.

testing techniques. As a result we cannot generalize results
of software testing techniques evaluation. Current studies
point out that various other factors, in addition to the ap-
plied testing technique, have a strong effect on the results
of defect finding effectiveness and efficiency. Even though
the experiments are designed to study the effects of one or
more selected testing techniques, the effects of all other
factors cannot be excluded. The defect detection effective-
ness and efficiency seems to depend on the person who
test the software, the software being tested, and the actual
defects that exist in the software. We can summarize the
results of empirical studies on testing techniques as fol-
lows:

factors in the experiments evaluating testing techniques
are their effectiveness (i.e., number of detected defects)
and efficiency (i.e., effort required to apply the technique)
in programs. [34] identified two classes of evaluation stud-
ies on testing techniques; intra-family and inter-family.

4.1	 Evaluation results

Summarizing the results of the studies conducted to evalu-
ate the software testing techniques. We observed that stud-
ies unfortunately have a lot of contradiction in terms of
their results. The results also are very inconclusive and do
not reveal much information. [41] also states that experi-
mental results are conflicting, and the experiments lack
a formal foundation and studies have a lot of difference
between parameters they have taken into consideration.
From the analysis of previous studies, we can conclude
that the experimental studies on software testing tech-
niques conducted so far does not provide a basis for mak-
ing any strong conclusions regarding different software

TABLE 1
INTRA-FAMILY COMPARISONS

Technique Study Year
Data-flow testing techniques Weyuker

Bieman and Schultz
1990
1992

Mutation testing techniques Offut and Lee Wong and Mathur Offut et al. 1994
1995
1996

Regression testing techniques Rothermel and Harrold
Vokolos and Frankl
Kim et al.
Bible et al.
Graves et al.

1998
1998
2000
2001
2001

TABLE 2
INTER-FAMILY COMPARISONS

Comparison Groups Study Year
Control-flow, data-flow and random techniques Frankl and Weiss

Hutchins et al.
Frankl and Iakounenko

1993
1994
1998

Functional and structural techniques.

Note: All studies also compare manual static testing technique.
Code Reading with functional and structural techniques.

Hetzel
Myers
Basili and Selby
Kamsties and Lott
Roper et al.
Juristo and Vegas
Juristo et al.

1976
1978
1987
1995
1997
2003
2012

Mutation and data-flow techniques Wong and Mathur
Frankl et al.

1995
1997

Regression and improvement testing techniques Wong et al.
Rothermel et al.
Elbaum et al.
Kim et al.
Graves et al.

1998
1999
2000
2000
2001

Software Engineering : An International Journal (SEIJ), Vol. 3, No. 1, april 2013 45

ity of a technique is one such issue, while threats to valid-
ity arising out of the experimental setting (be it academic
or industrial) is another. [49] and [50] has highlighted fol-
lowing issues with current studies:

1.	 Informality of the results analysis (many studies are
based solely on qualitative graph analysis).

2.	 Limited usefulness of the response variables exam-
ined in practice, as is the case of the probability of
detecting at least one fault.

3.	 Non-representativeness of the programs chosen, ei-
ther because of size or the number of faults intro-
duced.

4.	 Non-representativeness of the faults introduced in
the programs.

5.	 We believe that there are many reasons for this inad-
equacy of knowledge and restricted results regarding
the evaluation of software testing techniques. After
analyzing the existing studies on software testing
techniques evaluation, we conclude that most of the
existing studies on evaluation of testing techniques
have following problems:

4.2.1	 Experimentation problems

1.	 Comparing testing techniques is to quantify fault
detection effectiveness and efficiency. A comparison
criterion for testing techniques is usually not well
defined. [7] states that in the context of testing tech-
nique selection, the term best has different meanings
depending on the person making comparisons.

2.	 Existing studies mostly differ in the number and type
of parameters they have used in their study. A com-
mon standard is missing which makes it difficult to
compare these studies.

3.	 Most of the studies do not take all the parameters
necessary for comparison into consideration, as a
result of that one technique do not supersede other
techniques on all fronts; thereby creating ambiguity
in test technique selection.

4.	 The inconclusive results also indicate the presence
of factors that were not under experimental control.
Factors seem to be at work that aren’t measured or
controlled but that nonetheless influence defect de-
tection methods’ performance [35]. It might be use-
ful to investigate “softer” factors such as motivation
and satisfaction and in particular to apply methods in
practice, monitor them, and follow up. The compara-

1.	 There is no clear, consistent evidence that one fault
finding technique is stronger than others, rather the
evidence to date suggests that each technique has its
own merits and demerits.

2.	 While some studies conclude that technique A is
ranked higher than technique B. Some studies con-
clude technique A and technique B find different
kinds of defects, and are as such complementary.

3.	 The effectiveness of verification activities is low;
only 25-50% of the defects are found using inspec-
tion, and 30-60% using testing.

4.	 Combining testing techniques uncovered more de-
fects than did a single technique.

5.	 Combining individual testers seem to increase defect
detection effectiveness more than combining test
case design techniques. This fact was also reported
by [22] [34].

6.	 Defect detection effectiveness highly depends on the
individual differences between testers. The variation
between individuals seems to be greater than the
variation between techniques as the different testers
seem to find clearly different defects despite using
the same technique.

7.	 Defect detection effectiveness seems to be correlated
with the amount of test cases.

8.	 The effectiveness of different techniques seems to
depend on the type of software tested and the types
of the actual defects in the software.

9.	 It seems that some types of faults are not well suited
to some testing techniques.

10.	 There appears to be a relationship between the pro-
grams, or the type of faults entered in the programs,
and technique effectiveness.

4.2	 Problems with existing studies

We must first clearly recognize the issues in any field in
order to make it more mature by resolving those issues.
After so many years of empirical investigation, we are still
without definite results. In a look at 25 years of data, the
authors have reached the same conclusion after studying
various experiments on software testing [41]. In addition
they found that it is really difficult to compare different
experiments; however, they do not present any solution to
it. [48] discussed many issues facing empirical studies of
testing techniques; criteria to quantify fault-detection abil-

Farooq ET AL.: empirical evaluation of software testing techniques - need, issues and mitigation46

results from diverse studies. Also it becomes difficult
to replicate the work already done. Everyone is go-
ing its own way, starting things from very beginning.
It would have been good to validate and extend the
earlier studies so that results can be generalized and
implemented at industry level.

2.	 Usually the main focus is often to invent a special
technique and compare it with one already known
(often a similar technique). Little attention is given
to evaluate already existing techniques which could
have served professionals better.

3.	 The problem with testing techniques in industry is
that their power is not known to all the testers, since
often there is a belief of their efficiency and effec-
tiveness, and it is seldom proven for larger complex
system. The actual research setting of creating rea-
sonable comparative models have not been totally
explored. Also studies revealed that testers are of-
ten not trained in testing, but on system behavior
[7]. Even if people are formally trained in test tech-
niques, they easily fall back to approaching testing
from a system usage viewpoint rather than applying
a test technique, since requirements on testers are
seldom assessed as long as they find some failures.

5.	 WHERE DO WE STAND AT THIS MOMENT?

The big achievement we had from conducting so many
experimental experiments is that we do know with cer-
tainty that the usage of a testing technique is better than
none, and that a combination of techniques is better than
just one technique. We also know that the use of testing
techniques supports systematic and meticulous work and
that techniques are good for finding possible failures. No
firm research conclusions exist about the relative merits
of software testing techniques. The conclusions we drew
may only apply to their specific experimental environment
and are not general enough to be applied to other research
environments, let alone to software testing industry [52].
Most of the research that has been performed is very aca-
demic and not terribly useful in the real testing world. At
present we do not have adequate proof of any technique
superseding other ones in terms of effectiveness or effi-
ciency. Not only we have limited knowledge about num-
bers, we also lack the information regarding the types of
faults.

How should one choose testing technique at present? Cur-
rent studies suggest it is just not sufficient to rely on a
single method for catching all defects in a program. Actu-
ally each technique is good for certain things, and not as
good for other things. Each individual technique is aimed

tive study of the effectiveness of different techniques
should be supplemented by studies of the fault types
that each technique detects and not only the prob-
ability of detecting faults. That is, even if T1 and T2
are equally effective, this does not mean that they
detect the same faults [50]. This would provide a bet-
ter understanding of technique complementary, even
when they are equally effective.

5.	 Fault seeding is used in most of the experiments. The
advantage is that we can seed large numbers faults
which results in very less random variation in fault
ratios and more statistical power. However the disad-
vantage is that it often results in seeding unrealistic
faults and we may only seed faults of a particular
type. As a consequence, our results are mostly inva-
lid or incomplete.

6.	 The experiments are often biased either towards
academic or industrial system, as they are usually
carried out with only academic or industrial settings
into consideration. Most of the studies conducted so
far are academic in nature. In all studies, subjects
have not been chosen properly according to given
scenario. Even though experiment conducted by [12]
took into account several classes of professionals.
Most experiments conducted the studies in student
environments, which limit the transfer of experiment
results to real world. Studies are less validated or
hardly put to practice in testing industry. Studies in
an academic setting are often a first step before stud-
ies are carried in industrial settings [41] [51]. So we
should take both systems into consideration while
carrying out such experiments. Therefore, we need
to balance between academic and industry perspec-
tive.

7.	 Another major problem with testing technique evalu-
ation is that experiments are mostly made on a small
sample (code sample selection is in majority below
2K), and often with the demonstration that they ei-
ther perform better than another specific technique.
The main reason for this is the difficulty to get large
amount of real data to perform research on. The num-
ber of faults on sample of this size may not be large
enough to allow for quantitative, statistical analysis.

4.2.2	 Knowledge problems

1.	 Existing studies do not tend to share the knowledge
they acquire by using a testing technique with oth-
ers [7]. The information related to these studies is
not fully available which makes it difficult for re-
searchers or industry professionals in drawing exact

Software Engineering : An International Journal (SEIJ), Vol. 3, No. 1, april 2013 47

One issue that is raised by all studies is that we need to
carry out experimentation on a large scale using a com-
mon benchmark/framework. A common standard is also
required to standardize the evaluation process of such ex-
periments. Empirical studies on large scale artifacts, within
real world contexts, and replicated by several professional
testers to attain generally valid results would be, of course,
prohibitively expensive. A possible way out to overcome
such difficult challenges could be that of combining the
efforts of several research groups, currently conducting
separate experimentations, and join their forces to carry
out a widely replicated experiment, i.e., factorize a large
experiment in pieces among several laboratories [57]. Ber-
tolino’s idea is similar to that of launching an “Open Ex-
periment" initiative, similarly to how some Open Source
projects have been successfully conducted. However, not
all open source projects are necessarily successful, and ex-
perimentation, to be credible, needs very careful planning
and control.

Empirical software engineering research needs research
guidelines to improve the research and reporting process-
es. There exists a real need in industry to have guidelines
on which testing techniques to use for different testing ob-
jectives, and how usable these techniques are [47]. Apart
for guidelines or a common standard required for report-
ing experiments like one proposed by [56], we need guide-
lines for carrying for out experiments to mitigate the issues
reported so far in ESE. Here we present a framework (a set
of guidelines) how experiments/studies for evaluating the
testing techniques should be carried out so that definite,
practical and comparable results about relative merits of
testing techniques can be achieved. The proposed guide-
lines are general since no assumptions about the testing
technique, subjects and a program have been made.

1.	 Studies should be carried on a set of common sys-
tems or at least similar systems. It will make compar-
isons of techniques much easier. [58] If is states that
comparison of a testing technique is only possible to
measure if you can compare two techniques for the
same set (i.e. software) under same set of conditions.

2.	 Studies should be carried out on a large sample and
on real data (most preferably on industrial data).
The studies should be carried in industrial settings
to extend the generalizations derived from them.
The number of detected faults should be sufficient
enough for quantitative, statistical analysis. Carrying
out experiments on such data will draw results that
will be near to perfection if not perfect. We need to
build some standardized and better laboratory pack-
ages which should represent actual software engi-

at particular types of defect as well. For example, state
transition testing is unlikely to find boundary defects.
Some techniques are more applicable to certain situa-
tions and test levels; others are applicable to all test lev-
els. Some testing techniques are never considered for use
at all and others are used over again in different software
projects without even examining, after use, whether or not
they were really suited [53]. One conclusion that seems
to have been reached is: There is no best technique. Each
testing technique is good at finding some specific classes
of defects, using just one technique will help ensure that
many defects of those particular classes are found. Un-
fortunately, it may also help to ensure that many defects
of other classes are missed! Using a variety of techniques
will therefore help ensure that a variety of defects are
found, resulting in more effective testing. However, it will
also ensure the excessive use of resources which will in
turn result in less efficiency. So it is argued that more ex-
perimental work is required to evaluate testing technique
so that our testing will be both effective and efficient. We
need to know how to evaluate testing methods, how much
effective are testing techniques in terms of effort and de-
fect finding capability as we always want to select a test-
ing technique that will bring the product to an acceptable
level. Recent surveys on comparisons of various software
testing techniques also concludes that further empirical re-
search in software testing is needed, and that much more
replication has to be conducted before general results can
be stated [34] [41]. But the experimentation should be car-
ried out in such a way so that results can be realistic and
with very less contradictions. Then only we can have firm
knowledge about the effectiveness and efficiency of the
testing technique in revealing faults, the classes of faults
for which the technique is useful, and other allied aspects;
then only can we apply the results in the real world.

6.	 PROPOSED GUIDELINES FOR SOFTWARE
TESTING TECHNIQUES EVALUATION

The knowledge for selecting testing techniques should The
knowledge for selecting testing techniques should come
from studies that empirically justify the benefits and appli-
cation conditions of the different techniques [50]. Basili et
al. in their book “Empirical Software Engineering Issues
- critical assessment and future directions” which contains
a collection of excellent papers focused on empirical soft-
ware engineering explains past successes and failures, as-
sess the current state of the practice and research, identify
challenges and issues, discuss promising opportunities and
define future directions and roadmap for research, prac-
tice, education and training [54]. Briand also highlights
many issues most commonly encountered while perform-
ing empirical studies of software testing techniques [55].

Farooq ET AL.: empirical evaluation of software testing techniques - need, issues and mitigation48

valid and unambiguous. One observation that imme-
diately jumps out is that researchers and developers
must publish more information on the types, not just
the numbers, of faults that the techniques can remove
[41]. Some of factors necessary for comparison are

a.	 Number of faults
b.	 Fault rate
c.	 Fault type
d.	 Size (test case generated)
e.	 Coverage
f.	 Time (Usually it is execution time)
g.	 Software/program type.
h.	 Experience of subjects
i.	 Reliability improvement

6.	 Experimental details should be shared. Besides re-
sults, experiments should lead to an experimentation
package that would allow other researchers to easily
replicate experiments. Ideally, it should contain all
the necessary material to perform the experiment and
should be publicly available in open source fashion.
This would allow the research community to con-
verge much faster towards credible results.

7.	 We should balance all dimensions of validity to
achieve trustworthy empirical studies (i.e. the bal-
ance between internal (researcher point of view) and
external (Practitioner point of view) validity). Stud-
ies in academia are often strong in terms of internal
validity (i.e. our capability to draw proper conclu-
sions from the data) and weak as far as external va-
lidity is concerned (i.e. it is hard to know the extent
to which you can generalize your results to industrial
contexts). Field studies have exactly the opposite
strengths and weaknesses. Both academic and field
studies are necessary. Field studies are more suited
to assess the difficulties to apply techniques in prac-
tice and to confirm the results obtained on real sets
of faults.

8.	 The information available about the techniques is
normally distributed across different sources of in-
formation (books, articles and even people) [53]. We
should work towards building a sharable centralized
depository on testing techniques. In addition, as [41]
states that researchers and practitioners could help the
field progress by encouraging a commitment to try
promising research in more representative industrial
conditions and to make that accessible industry and
software engineering groups should try to develop
a centralized and accessible repository which will
contain programs/software’s and all the related infor-
mation which are realistic and truly represent industry.

neering practices. Carry out experiments on such
packages will help in deriving realistic results. A
better idea will be that a software engineering groups
like ESERNET, SERG, FRAUNHOFER CENTER
FOR EXPERIMENTAL SOFTWARE ENGINEER-
ING etc helps in creating some standard experimen-
tal repositories preferably in open source fashion.

3.	 Carrying out experimentation on actual faults is
more realistic from an external validity standpoint.
However, extracting proper results from such results
often is time consuming as we are unaware about the
number of actual faults present in product. In this
method detailed fault information can be expensive
to collect. On the other hand fault seeding allows us
to seed as many faults as necessary in order to work
with a sample that is large enough to be amenable
to statistical analysis. However, seeding does not al-
ways seed realistic faults. However, if we still want
to go for fault seeding, we need an unbiased, system-
atic, and inexpensive way to do so. We need to in-
vestigate and define procedures to seed faults for the
purpose of experimentally assessing test techniques.
So it is advisable to use both methods on different
systems, this way we can achieve more concrete and
applicable results.

4.	 We can perform software testing experiments either
by using human subjects or by using simulation. Us-
ing first one allows us to access other factors like cost
effectiveness and human applicability, Test suites are
perhaps more realistic, as derived by human subjects
performing the actual test tasks; while second one
allows us to test software rigorously (100% cover-
age) as we can generate large number of test cases,
accounting for random variation but this technique
can suffer from biasing problem if not implemented
properly. It is preferable to use human subjects as
mostly techniques are applied using humans subjects
or at least require some human knowledge. Simula-
tion however should not be discarded. If we will use
both techniques the role and domain of each should
be well defined.

5.	 Criteria for comparing testing techniques should
take into consideration many parameters. We can-
not expect experiments to be perfect with respect
to all factors which need to be taken into considera-
tion while evaluating software testing techniques.
But we should strive towards carrying out experi-
ments which take into consideration maximum fac-
tors while evaluating testing technqiues. Taking into
account diverse parameters yield more appropriate
results and makes testing techniques selection more

Software Engineering : An International Journal (SEIJ), Vol. 3, No. 1, april 2013 49

[11]	 G. Myers, “A controlled experiment in program testing and code
walkthroughs/inspections“, Communications of the ACM, 21, no.9,
pp.760-768, 1978.

[12]	 V. R. Basili and R. Selby, “Comparing the effectiveness of software
testing strategies”, Software Engineering, IEEE Transactions on,
no.12, pp.1278-1296, 1987.

[13]	 E. Weyuker, “The cost of data flow testing: An empirical study”,
Software Engineering, IEEE Transactions on, 16, no.2, pp.121-128,
1990.

[14]	 J. Bieman and J. Schultz, “An empirical evaluation (and specifi-
cation) of the all-du-paths testing criterion”, Software Engineering
Journal, 7, no.1, pp.43-51, 1992.

[15]	 P. Frankl and S. Weiss, “An experimental comparison of the effec-
tiveness of branch testing and data flow testing”, Software Engi-
neering, IEEE Transactions on, 19, no.8, pp.774-787, 1993.

[16]	 M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments
of the effectiveness of data flow and Control flow-based test ad-
equacy criteria”, In Proceedings of the 16th international confer-
ence on Software engineering, pp.191-200. IEEE Computer Society
Press, 1994.

[17]	 A. Offutt and S. Lee, “An empirical evaluation of weak mutation”,
Software Engineering, IEEE Transactions on, 20, no.5, pp.337-344,
1994.

[18]	 E. Kamsties and C. Lott, “An empirical evaluation of three defect-
detection techniques”, Software Engineering ESEC'95, pp.362-383,
1995.

[19]	 W. Wong and A. Mathur, “Fault detection effectiveness of mutation
and data flow testing”, Software Quality Journal, 4, no.1, pp. 69-83,
1995.

[20]	 A. Offutt, A. Lee, G. Rothermel, R. Untch, and C. Zapf, “An ex-
perimental determination of sufficient mutant operators”, ACM
Transactions on Software Engineering and Methodology (TOSEM),
5, no.2, pp.99-118, 1996.

[21]	 P. Frankl, D. Hamlet, B. Littlewood, and L. Strigini, “Choosing a
testing method to deliver reliability”, In Proceedings of the 19th
international conference on Software engineering, pp. 68-78. ACM,
1997.

[22]	 M. Roper, M. Wood, and J. Miller, “An empirical evaluation of de-
fect detection techniques”, Information and Software Technology,
39, no.11, pp.763-775, 1997.

[23]	 W. Wong, J. Horgan, S. London, and H. Agrawal, “A study of effec-
tive regression testing in practice”, In PROCEEDINGS The Eighth
International Symposium on Software Reliability Engineering,
pp.264-274. IEEE, 1997.

[24]	 P. Frankl and O. Iakounenko, “Further empirical studies of test ef-
fectiveness”, In ACM SIGSOFT Software Engineering Notes, vol-
ume 23, pp.153-162. ACM, 1998.

[25]	 G. Rothermel and M. Harrold, “Empirical studies of a safe regres-
sion test selection technique”, Software Engineering, IEEE Trans-
actions on, 24, no.6, pp.401-419, 1998.

[26]	 F. Vokolos and P. Frankl, “Empirical evaluation of the textual dif-
ferencing regression testing technique”, In Software Maintenance,
1998. Proceedings. International Conference on, pp. 44-53. IEEE,
1998.

[27]	 G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Test case prior-
itization: An empirical study”, In Software Maintenance, (ICSM'99)
Proceedings. IEEE International Conference on, pages 179-188.
IEEE, 1999.

7.	 CONCLUSION AND FUTURE WORK

Despite the general feeling that everything is changing
fast, techniques do not usually change overnight. One sure
thing that we came to know is that we have to do test-
ing anyhow. With so many testing techniques and the very
inadequate quantitative and qualitative knowledge about
them, we strongly believe that there is a need to further
evaluate software testing techniques. Presently, we are
unaware about the absolute relative ordering of software
testing techniques and if we are to make software testing
more effective by selecting effective testing techniques
then we need to place existing software testing techniques
at least on an ordinal scale. Present situation calls for rep-
lication and further work on evaluation of software testing
techniques so as to acquire the basic knowledge about the
relative effectiveness and efficiency of software testing
techniques for both fault finding and reliability criterion.
To do so we need to carry out experimentation on large
scale but that needs to be done in a way that can be com-
pared and should have no contradictions. For that we also
need to establish common and standard parameters so that
there are little variations in the experimentation goals. We
also need to find out dimensions on the basis of which we
can agree that one testing method is more effective than
another testing method.

REFERENCES

[1]	 A. Bertolino, “Software testing research: Achievements, challeng-
es, dreams”, In Future of Software Engineering, 2007. FOSE'07,
pp. 85-103. IEEE, 2007.

[2]	 J. Goodenough and S. Gerhart, “Towards a theory of test data selec-
tion”, ACM SIGPLAN Notices, 10, no.6, pp.493-510, 1975.

[3]	 H. Chu, “An evaluation scheme of software testing techniques”,
Technical Report Series, NC University, 1997.

[4]	 S Eldh, “On Test Design”. PhD thesis, Malardalen University
Press, October 2011. URL http://www.mrtc.mdh.se/index.php?choi
ce=publications&id=2635.

[5]	 T. Kurokawa and M. Shinagawa, “Technical trends and challenges
of software testing”, http://www.nistep.go.jp/achiev/ftx/eng/stfc/
stt029e/qr29pdf/STTqr2902.pdf. Last accessed on Jan 2012.

[6]	 A. Tawileh, S. McINTOSH, B. Work and W. Ivins, “The dynamics
of software testing”, In Proceedings of the 25th System Dynamics
Conference, July, 2007.

[7]	 S. Vegas, “What information is relevant when selecting testing
techniques”, In Proceedings of the 13th International Conference
on Software Engineering and Knowledge Engineering, pp. 45-52,
2001.

[8]	 A. Farooq and R. Dumke, “Evaluation approaches in software test-
ing”, Univ.-Bibliothek, Hochschulschr.-und Tauschstelle, 2008.

[9]	 L. Luo, “Software testing techniques”, Institute for software re-
search international Carnegie mellon university Pittsburgh, PA,
15232:1-19, 2001.

[10]	 W. Hetzel, “An experimental analysis of program verification meth-
ods”, ACM, 1976.

Farooq ET AL.: empirical evaluation of software testing techniques - need, issues and mitigation50

[45]	 H. Do, S. Elbaum and G. Rothermel, “Supporting controlled ex-
perimentation with testing techniques: An infrastructure and its po-
tential impact”, Empirical Software Engineering, 10, no.4, pp.405-
435, 2005.

[46]	 S. Eldh, H. Hansson, S. Punnekkat, A. Pettersson and D. Sundmark,
“A framework for comparing efficiency, effectiveness and appli-
cability of software testing techniques”, In Testing: Academic and
Industrial Conference-Practice And Research Techniques, 2006.
TAIC PART 2006. Proceedings, pp. 159-170. IEEE, 2006.

[47]	 T. Vos, B. Martin, I. Panach, A. Baars, C. Ayala and X. Franch,
“Evaluating software testing techniques and tools”, Proceedings of
JISBD 2011, ISBN: 978-84-9749-486-1, pp. 531-536, 2011.

[48]	 L. Briand and Y. Labiche, “Empirical studies of software testing
techniques: Challenges, practical strategies, and future research”,
ACM SIGSOFT Software Engineering Notes, 29, no.5, pp. 1-3,
2004.

[49]	 N. Juristo, A. Moreno and S. Vegas, “A survey on testing technique
empirical studies: How limited is our knowledge”, In Empirical
Software Engineering, 2002. Proceedings. 2002 International Sym-
posium, pp. 161-172. IEEE, 2002.

[50]	 N. Juristo, A. Moreno and S. Vegas, “Limitations of empirical test-
ing technique knowledge”, SERIES ON SOFTWARE ENGINEER-
ING AND KNOWLEDGE ENGINEERING, 12, pp.1-38, 2003.

[51]	 N. Juristo and A. Moreno, “Basics of software engineering experi-
mentation”. Springer, 2001.

[52]	 X. Yang, “Towards a self-evolving software defect detection pro-
cess”, PhD thesis, University of Saskatchewan, 2007.

[53]	 S.Vegas, “Identifying the relevant information for software testing
technique selection”, In Empirical Software Engineering, 2004.
ISESE'04. Proceedings. 2004 International Symposium on, pages
39-48. IEEE, 2004.

[54]	 V. R. Basili, “The role of controlled experiments in software engi-
neering research”, In Empirical Software Engineering Issues. Criti-
cal Assessment and Future Directions (pp. 33-37). Springer Berlin
Heidelberg, 2007.

[55]	 L. C. Briand, “A critical analysis of empirical research in software
testing”, In Empirical Software Engineering and Measurement,
ESEM 2007. First International Symposium on (pp. 1-8). IEEE,
September, 2007.

[56]	 A. Jedlitschka, M. Ciolkowski & D. Pfahl, “Reporting experiments
in software engineering”, In Guide to advanced empirical software
engineering (pp. 201-228). Springer London, 2008.

[57]	 A. Bertolino, “The (im) maturity level of software testing”, ACM
SIGSOFT Software Engineering Notes, 29, no.5, pp.1-4, 2004.

[58]	 E. Weyuker, “Can we measure software testing effectiveness?”, In
Software Metrics Symposium, 1993. Proceedings., First Interna-
tional, pp. 100-107. IEEE, 1993.

[28]	 S. Elbaum, A. Malishevsky and G. Rothermel, “Prioritizing test
cases for regression testing”, ACM SIGSOFT Software Engineering
Notes, 25, no.5, pp.2000.

[29]	 J. Kim, A. Porter and G. Rothermel, “An empirical study of regres-
sion test application frequency”, In Software Engineering, 2000.
Proceedings of the 2000 International Conference on, pp.126-135.
IEEE, 2000.

[30]	 J. Bible, G. Rothermel, and D. Rosenblum, “A comparative study of
coarse-and fine-grained safe regression test-selection techniques”,
ACM Transactions on Software Engineering and Methodology
(TOSEM), 10, no.2, pp.149-183, 2001.

[31]	 T. Graves, M. Harrold, J. Kim, A. Porter and G. Rothermel, “An
empirical study of regression test selection techniques”, ACM
Transactions on Software Engineering and Methodology (TOSEM),
10, no.2, pp.184-208, 2001.

[32]	 N. Juristo, and S. Vegas, “Functional testing, structural testing
and code reading: what fault type do they each detect?” Empirical
Methods and Studies in Software Engineering, pp. 208-232, 2003.

[33]	 N. Juristo, et al. "Comparing the Effectiveness of Equivalence Par-
titioning, Branch Testing and Code Reading by Stepwise Abstrac-
tion Applied by Subjects", Software Testing, Verification and Vali-
dation (ICST), 2012 IEEE Fifth International Conference on. IEEE,
2012.

[34]	 N. Juristo, A. Moreno, and S. Vegas, “Reviewing 25 years of testing
technique experiments”, Empirical Software Engineering, 9, no.1,
pp.7-44, 2004.

[35]	 P. Runeson, C. Andersson, T. Thelin, A. Andrews, and T. Berling,
“What do we know about defect detection methods?” [Software
testing]. Software, IEEE, 23, no.3, pp.82-90, 2006.

[36]	 R. Conradi, A.S. Marjara, and B. Skåtevik, “An Empirical Study
of Inspection and Testing Data at Ericsson, Norway,” Proc. 24th
NASA Software Eng. Workshop, NASA, 1999; http://sel.gsfc.nasa.
gov/website/sew/1999/topics/marjara_SEW99paper.pdf.

[37]	 A. Aurum, H. Petersson and C. Wohlin, “State-of-the-art: software
inspections after 25 years”, Software Testing, Verification and Reli-
ability, 12, no.3, pp.133-154, 2002.

[38]	 M. Host, C. Wohlin and T. Thelin, “Experimental context classifica-
tion: incentives and experience of subjects”, In Software Engineer-
ing, 2005. ICSE 2005. Proceedings. 27th International Conference
on, pp. 470-478. IEEE, 2005.

[39]	 T. Berling and T. Thelin, “An Industrial Case Study of the Verifi-
cation and Validation Activities,” Proc. 9th Int’l Software Metrics
Symp., IEEE CS Press, pp. 226–238, 2003.

[40]	 N. Juristo, A. Moreno, S. Vegas & M. Solari, “In search of what we
experimentally know about unit testing”, Software, IEEE, 23, no.6,
pp.72-80, 2006.

[41]	 A. Moreno, F. Shull, N. Juristo and S. Vegas, “A look at 25 years of
data”, IEEE Software, 26, no.1, pp.15-17, 2009.

[42]	 S. Vegas and V. Basili, “A characterisation schema for software test-
ing techniques”, Empirical Software Engineering, 10, no.4, pp.437-
466, 2005.

[43]	 V. R. Basili, R. Jr, Selby and D. Hutchens, “Experimentation in soft-
ware engineering”, Technical report, DTIC Document, 1985.

[44]	 H. Do, S. Elbaum and G. Rothermel, “Infrastructure support for
controlled experimentation with software testing and regression
testing techniques”, In Empirical Software Engineering, 2004.
ISESE'04. Proceedings. 2004 International Symposium on, pp. 60-
70. IEEE, 2004.

Software Engineering : An International Journal (SEIJ), Vol. 3, No. 1, april 2013 51

ABOUT THE AUTHORS
Sheikh Umar Farooq is an As-
sistant Professor in Department of
Computer Sciences at University
of Kashmir, India. He received his
Ph. D. in Computer Sciences from
University of Kashmir. His re-
search interests include empirical
software engineering and software

testing techniques’ evaluation. He is a member of various
software engineering societies like SIGSE, IACIST and
IAENG.

SMK Quadri is a Professor in De-
partment of Computer Sciences at
University of Kashmir, India. He
did his M. Tech. in Computer Appli-
cation from Indian School of Mines
(ISM), Dhanbad and Ph. D. in Com-
puter Sciences from University of
Kashmir. His research interests in-

clude software reliability, software testing and disk file
systems. He is a member of Computer Society of India.

