
Software engineering : an international Journal (SeiJ), Vol. 3, no. 1, april 2013 7

A Practical Approach to Adaptive
Service Composition

Dimuthu U. Gamage, Ryan Rybarczyk, Rajeev R. Raje
Department of Computer and Information Science, Indiana University Purdue University Indianapolis

Indianapolis, IN 46202, U. S. A.
{dcundupi, rrybarcz, rraje}@cs.iupui.edu

Abstract - Most web services today are made up of dynamic
entities, and because of these entities the services may need
to evolve and adapt to their environment over time. This ad-
aptation, by the web services, can occur at any of the service
contract levels. In addition, the requirements of the client
may change over time based upon their needs and wants. Be-
cause of this, the service composition process needs to also be
adaptable and dynamic while taking into account the mul-
ti-level agreements present within distributed system. This
composition process is required when a client has specified
requirements that a single service may not completely satisfy
but instead may require many services to meet their given
needs. Through the creation of a proxy service these needs
can then be composed and presented to the client as if they
were working within a single service. Additionally, as both
service and client requests change or are altered over time
the composer also may need to adjust this proxy service to
meet both sets of needs. In this paper, we propose a design
of an adaptive service composer that will provide a focus
on automatic adaptation of semantic and quality of service
(QoS) level contracts in compositions. This proposed imple-
mentation will then be empirically validated on the existing
Enhanced Distributed Object Tracking System (eDOTS).

Keywords - Distributed Systems, Software Services, Service
Composition, Adaptation.

1. INTRODUCTION

More and more distributed systems are currently being
assembled out of independently created Web Services
and this trend is expected to continue in future. As these
distributed systems may need to adapt over a period of
time due to various reasons, such as performance require-
ments, their underlying architecture consisting of a com-
position of individual services also need to be adaptable in
nature. These distributed systems may range from simple
to complex, in terms of the features that they provide to
the clients. For instance, a service could provide relevant
athletic event information, but a separate service may be
needed to get the weather forecast for those events. In this
situation, the use of service composition would save the
client from being required to make additional queries to
retrieve the desired information. This composition may be
a trivial task, in the case of the previous example, or it
could involve a complex workflow. This scenario could be
avoided, however, if instead the client only interacted with
a single point of contact that acts as a front end of the re-
quired distributed system. This could be achieved by using

a service composer that acts as an intermediary between
the composed distributed system and the client and hides
the underlying details of how the information is collected
from multiple services. Also, a client’s request may be
multi-level [1] in nature consisting of syntax, semantics,
synchronization, and Quality of Services (QoS)-related
features and the service composer may need to provide an
interface that satisfies such a request.

As appealing the idea of designing such a service com-
poser is, its design is hardly trivial especially when the
services that participate in the composition change over
a period of time. Such changes will be reflected in the
multi-level contracts of services [1] and may be due to the
changes in the execution environment (e.g., addition of
new resources) or internal changes associated with the ser-
vices (e.g., upgrades associated with service algorithms).
A service composer that is aware of such changes should
ensure that the composed distributed system still satisfies
a client’s requirements, regardless of the changes in the
underlying participating services. For that, the composer
should re-evaluate the composed system, and carry out ap-
propriate modifications (i.e., search, discover, add, remove
or replace services as needed). We refer to such an adap-
tive service composer as the composing agent.

As a concrete application scenario, consider a distributed
tracking system that is made up a set of heterogeneous
sensor services (such as camera services, and wireless
trackers), a filter service, and a fusion service that satisfies
certain QoS requirements (such as response time and er-
ror). The composing agent can create this tracking system
out of existing choices for each type of these services and
ensure that the QoS-requirements are met initially. How-
ever, over time, the participating camera services may pro-
vide lower response time, or less accurate tracking infor-
mation (due to the environment changes such as network
delays, processing and battery limits). In such situations,
the composing agent would re-evaluate the system and
carry out the necessary changes in the composition (e.g.,
replace the slow sensor services with more powerful sen-
sor services) to meet the QoS-requirements of the client.
However, when such changes happen frequently, the over-
head of completely re-evaluating the current composition
would not be desirable as it would be an additional burden
on the performance of the underlying system (in this case,
the distributed tracking system). Therefore, it is important
that the composing agent carries out minimal changes to
an existing distributed system while still satisfying the cli-
ent’s multi-level requirements. As a result, we are propos-
ing a novel approach to adaptive composition by allowing

GamaGe eT aL.: a pracTicaL approach To adapTive service composiTion8

the composing agent to either actively or passively request
information from both the client and existing Web Servic-
es in order to better assist, adapt, and provide the required
service composition in the presence of changes.

In this paper, we discuss the following contributions:
1. The implementation of the composition agent for the

QoS- and Semantic-level contracts that provides dy-
namic service composition both in an active as well
as a passive manner (this will be referred from here
on as eager and lazy composition). This agent serves
as a plugin within an existing distributed client ap-
plication.

2. An empirical validation of the composition agent
along with associated performance analysis via a
case study consisting of a distributed indoor tracking
system (the eDOTS [12-15]).

The rest of the paper is organized as follows: Section 2
compares the proposed adaptive composition approach
with existing approaches, Section 3 discusses the design
of the adaptive composition framework, Section 4 presents
core implementation details of the framework, Section 5
presents the results of experiments on the framework, and
Section 6 presents the concluding remarks and the related
future research directions.

2. RELATED WORK

In Bracciali et al. [2], the authors present a formal method
to adapt components that have mismatching semantics.
Their method includes specifying semantics of compo-
nents, using these component specifications in express-
ing the adaptor specification, and generating the adapter
automatically to enable the communication between
components using the prepared component specifications
and adapter specifications. This method requires writing
adaptor specifications between any two semantically in-
compatible components to enable the communication be-
tween them. Therefore, this approach cannot be used in a
dynamic service oriented system where the services are
discovered at runtime based on particular user require-
ments. In contrast, the composing agent proposed in this
paper has the ability to enable the communication between
set of services and clients dynamically based on the state
of the services at that point.

Phatak [17] discusses adaptation techniques of multi-level
specifications [1] (i.e., syntax, semantics, synchronization
and QoS levels) for dynamically adapting services. That
work has shown the importance of specifying different ad-
aptations supported by the services formally in their cor-
responding specifications. This helps the clients to prepare

the adaptation of communication with the services accord-
ingly. We have extended their work to build an adaptive
composing agent based on the multi-level specifications
of services.

McKinley et al. [10] classify compositional adaptation
techniques of middleware. Their studies include design
decisions to be made in an adaptive composition and asso-
ciated challenges. However, their discussions are limited
to the use of syntax and semantic compatibility in design-
ing re-composition in adaptive environment. In contrast,
our work includes the use of multi-level specifications (es-
pecially, the QoS level) in designing the re-composition.

There have been some attempts (such as, Hemer et al.
[6], Camara et al. [8]) to present formal approaches for
the adaptive composition at the semantic level. However,
investigating adaptations of compositions in QoS levels
are also important, as many real-time and embedded ap-
plications run on strict QoS requirements and these QoS
constraints should be maintained even with the changes in
the underlying execution environment.

Zhan et al. [3] propose a QoS-aware adaptive composition
method that involves policy-driven location-aware ser-
vice discovery and an adaptation policy to restrict the re-
evaluation of the composition. Although the goal of their
work is very similar to ours, our methods involve more
automation of composition based on heuristics algorithms
rather than the manually provided policies to obtain a QoS
optimized composed system. Aschoff et al. [16] provide
another aspect of QoS-aware adaptive composition by pre-
senting a method of proactively predicting the changes in
QoS of the available services and re-evaluating the com-
position based on the prediction. In contrast, our focus is
more on re-evaluating the composition with the changes
in the environment, while client can still use the system
without being aware of the changes (or with minimum
awareness).

3. BACKGROUND AND DESIGN

The task of a service composer, as shown in Figure 1, is
to take a request from a client and create a distributed sys-
tem, out of available services, which meets that client’s
requirements. This composition process requires that the
composer be provided a list of available services and what
they offer – the task of gathering this information is termed
as service discovery and various architectures have been
proposed for this task [4]. The composer will then exam-
ine the details related to different levels of specifications
associated with each service, select a subset of relevant
services, and subsequently, use these selected services to
create a distributed system and present a single view of the
composed system to the client. We refer to this type of a
composer as a basic composer.

Service
Discovery

Service
Repository

Basic
Composer

Locate Services

Request

Service
Request

Composed

Service

Figure 1 : Basic Composer

Software engineering : an international Journal (SeiJ), Vol. 3, no. 1, april 2013 9

The basic composer should provide a generic interface to
other entities (e.g., service discovery), so that it can be ap-
plied to a particular domain with minimum effort. A service
composition framework that includes the basic composer
is shown in Figure 2. In that figure, the domain independ-
ent and domain dependent pieces are identified separately.
Thus, this framework provides plug-in interfaces that al-
low domain experts to integrate the domain dependent
entities with the basic composer with minimal effort.
Among the domain independent components provided by
the framework, the Repository is a database storage of the
service specifications, the Composer provides the neces-
sary algorithms to generate composition specifications
from available services, and the Discovery provides inter-

Although, the basic composer needs to consider all the
levels indicated in the specification of services during the
composition process, in this paper, we focus solely on the
semantic and QoS levels of service contracts [1]. This de-
cision is primarily based upon the ability to easily negoti-
ate these levels between the service and client, as well as
the fact that these two levels are the most likely to undergo
changes throughout a service’s life time. These two layers
are described below.

Semantic Level Composition: The composition at the
semantic level involves the pre- and post-conditions as
specified by the service itself. This level deals with the
overall behavior of a particular service within a distrib-
uted system. When the client makes a request, the pre- and
post-conditions provided must be satisfied and ensured as
part of the fulfillment of the query. This provides the user
a guide about how the service will behave prior to and
after it finishes its required task. This guarantee, provided
by the developer of each service that is used to create the
distributed system, is utilized by the basic composer in the
composition process to meet a client’s requirements.

QoS Level Composition: The composition at the QoS lev-
el involves utilizing predefined QoS-attributes and their
associated values that are guaranteed by the developers of

face to clients to query services. As shown in Figure 1, the
discovery either presents single service directly from the
repository or if a single service is not available to suit the
client’s requirement, it provides a composed service to the
clients. Among the domain specific components Composi-
tion Operators provide mechanisms to calculate composed
attributes of services, Selection Heuristics provides algo-
rithms that heuristically select services for composition,
the Knowledgebase provides the relationships between
entities in a particular domain that are used in finding the
compatibility of entities in different services, and Service
Specifications provides the functional and non-functional
attributes of each individual services.

services and the interaction patterns between the services
that constitute a distributed system. This composition pro-
cess will often times require an external intervention and
use of heuristics to select a proper set of services from the
available ones that satisfy the client’s QoS requirements.
Heuristics can either be provided by a domain expert or
could be based on past execution history.

3.1. Design of an adaptive service composer

The proposed adaptive composer will, in addition to the
abovementioned functions of the basic composer, perform
the task of observing changes in underlying services, as
evident from alterations to their specifications, and to ac-
commodate for these changes while preserving, as much
as possible, the same view to the client of the composed
distributed system. As indicated earlier, we refer to such
an adaptive service composer as a composing agent.

The design of the composing agent needs to consider addi-
tional attributes such as the adaptive behavior of services,
the rigidness of the requirements of clients in an effort to
provide a runtime evaluation of service level contracts and
associated services in a composition. We are proposing
two types of evaluations, namely lazy and eager, to be in-
corporated in the design of the composing agent as shown

Discovery

Basic Composer

Repository

Service Specifications

Composition
Operators

Selection
Heuristics

Knowledge Base

Domain Independent

Domain Specific

Figure 2 : Architecture of the Basic Service Composition Framework

GamaGe eT aL.: a pracTicaL approach To adapTive service composiTion10

in the Figure 3. Lazy or passive evaluation takes place in a
similar fashion to the basic composer. This lazy evaluation
allows the composing agent to query the service repository
in a non-invasive manner in order to maintain a directory
of available services and their attributes. This method will
rely on service instances to provide status updates if any
variations in their behaviors take place during the course
of their executions. Therefore, there is a certain level of
trust (i.e., the entities will behave as expected) that must
be defined between the composing agent, the repository,
and the client request.

Figure 3 : Architecture of the Adaptive Service Composer or
Composing Agent

For eager or active evaluation, we place the responsibil-
ity of gathering the most up-to-date information about
services on to the composing agent. This will allow the
composing agent to query services and the repository in
an effort to maintain the most current information about
the services. These queries are issued either whenever a
service request is made to create the composed system or
at an appropriate frequency that is calculated by studying
the past history of adaptation of the relevant services. This
is especially important in situations where the services are
constantly in a state of change. This also will adjust to
the needs of the client’s request, as it could also be sub-
ject to change. Through the eager evaluation process, the
composing agent provides a high degree of guarantee of
fulfilling the client’s requirement as it maintains the most
up-to-date information about the services.

The usage of the adaptive service composer involves per-
forming an analysis of the individual properties associated
with semantic and QoS service composition in such a dis-
tributed system. This can further be divided and defined
into the following categories:

Semantic Level Adaptive Composition: The service pro-
vider specifies the possible alternative adaptations of se-
mantics, in the forms of pre- and post-condition tuples,
along with the default specification of semantics. The ser-
vice would then change between these adaptation alterna-

tives based on its environment. When the composing agent
is aware that a service involved in the composition process
has changed (and becomes invalid in the composition in
its current form), it will follow a defined set of algorithms
(e.g. domain independent algorithms provided by the gen-
eral framework, or domain independent algorithms pro-
vided by a domain experts that replaces the invalid service
with a new service based on the semantics specification.

QoS Level Adaptive Composition: Adaptive QoS Level
Composition requires the examination of existing services
in order to identify concrete services that could benefit
from adaptive composition. Once the concrete services
have been identified it is then the job of the Composition
Agent to determine how to properly perform service com-
position and how to best form a composition algorithm
to accomplish this task. Included in this decision making
process is the use of any and all heuristics that are generat-
ed by the specific system that can be utilized in providing
optimal QoS conditions. Prior domain knowledge is also
extremely helpful in selecting of critical QoS for the appli-
cation. In addition, we must also evaluate the application
domain, with regards to any domain specific QoS require-
ments or needs, in which the composition will be used.
This decision will play a role into the heuristic algorithms
used as part of the underlying QoS level composition.
Common approaches to service composition can be found
in [20], of which we have made use of a generic version of
the algorithm proposed in [20]. By using this approach we
will be able to dynamically handle the QoS level composi-
tion on an end-to-end basis. When examining the adap-
tive nature of the composer additional work was needed to
dynamically evaluate the concrete services, including the
ability to gather and accurately assess the current state of a
concrete service in terms of its QoS parameters.

4. IMPLEMENTATION

We implemented the proposed architecture (Figure 3) of
the composing agent using the Java programming lan-
guage. We used the Eclipse IDE to develop, integrate, and
test our source code. For execution of our test cases, we
made use of the JUnit test suite. Adaptive Service Com-
position, as indicated above, is implemented at two levels
– semantic and QoS levels.

4.1. Semantic Level:

The composition framework carries out the composition
of services by only considering the semantic specification
of services and the semantic requirements of the user. Ser-
vices that have similar semantic specifications are repre-
sented by one specification, with the specification being

 Service
Specifications

Repository

Eager Evaluator

Lazy Evaluator

Adaptive Composer

Pinging Notifying

Software engineering : an international Journal (SeiJ), Vol. 3, no. 1, april 2013 11

referred to asan abstract service specification. Therefore,
in the semantic level composition, the composer generates
compositions of abstract services. When the semantics of
the services are changed (i.e., services change one abstract
specification to a different abstract specification), the com-
posing agent updates the composition by changing the ser-
vice selection and the service composition patterns.

In this algorithm (Figure 4), when the client requests a
particular service (represented as ServiceRequest), the
composer queries the services that match the requested
output. If there are services that match with the query, they
are selected for the composition. However, the selected
services may contain inputs that are unknown to the user
(inputs that are not available in the Service Request). In
such cases, composer has to recursively find the services
that output these unknown inputs. We have used several
optimization techniques such as indexing and pruning af-
ter some level, and caching previously found service com-
position patterns. These optimizations in generating the
composition are intended to improve the performance of
the composed service in execution.

Following the algorithm, the composer does the composi-
tion by searching exhaustively for the given output until
there is a service, which matches with the user input found.
The ServiceRepository finds services for the composer
using both exact matching (i.e., the output of the service

ServiceSpecification searchCompositionService (ServiceRequest request)
 outputs = request.getOutput();
 return searchCompositionServiceForOutput(outputs, request)
end

ServiceSpecification searchCompositionServiceForOutput (Element outputs, ServiceRequest request)
 outputs = ServiceRepository.getServicesWithOutput(outputs);
 if (service != nil) then # if there exist one service satisfy the requirement
 return service
 parentService = new ComposedService
 for each output in outputs do
 service = ServiceRepository.getServicesWithOutput(output)
 if (service == nil)
 return nil;
 parentService.addToComposition(service, "parrellelJoin");
 new_outputs = service.getInputs() - request.inputs();
 Service new_service = searchCompositionServiceForOutput(new_outputs, request)
 service .addToComposition(new_service, "sequence")
 end
 return service
end

4.1.1. Semantic Level Composition without Considering
Adaptation

The semantic composition algorithm that the composer
follows is summarized in the following pseudo code.

is exactly same as the output of the request) and relaxed
matching (i.e., the output of the service is ontologically a
sub-class of the output of the request). For relaxed match-
ing, the repository uses the knowledge of domain ontolo-
gy. Domain ontology contains the relationships among the
entities in a particular domain and developed by domain
experts. Our framework use Web Ontology Language [19]
to represent the ontology.

The following sections describe how the algorithm men-
tioned in the Figure 4 is applied to a set of services to form
an indoor tracking system called eDOTS. The eDOTS is
explained in detail in the Section 5 (Experimentation &
Results).

The list of services in the eDOTS and their semantic speci-
fications are shown in the Table 1.

Figure 4 : Summary of the algorithms for Semantic Service Composition

GamaGe eT aL.: a pracTicaL approach To adapTive service composiTion12

Applying the algorithm shown in Figure 4 to the services mentioned above will result in the service composition tree
shown in Figure 6. In the Figure 6, services in the same level in a branch execute in a parallel or sequential manner
(based on the pattern name shown in the parent of the branch) to form the composed service in the parent of the branch.

TABLE 1
THE LIST OF SERVICES OF THE EDOTS WITH THEIR SEMANTIC SPECIFICATIONS

Service Name Service Description Pre-condition Post-Condition
Camera Service Provide a video stream - [Output = CameraReading]
Marker Repository Repository of Markers [Input=Item.Id] [Output=Item.Marker]
UFilter Service Filter the video stream based on

a marker
[Input=SensorReading] [Output=

FilteredSensorReading]

Kalman Service Fuse the video streams to [Input=FilteredSensorReading] [Output=Item.Position]
derive the position of a marker

The domain ontology used in performing relaxed matching is shown in the Figure 5. This ontology is created using tools,
such as Protégé OWL editor[11], and Hermit OWL Reasoner[7].

ID Item

Marker

Position

Sensor
Sensor

Reading

Filtered
Sensor

Reading

Camera
Camera
Reading

Filtered
Camera
Reading

hasID

hasMarker

hasPosition

emits

hasCaptured

Figure 5 : Domain Ontology associated with the eDOTS system

Marker
Repository

Sequence Composition

Parallel Composition UFilter Service Kalman Service

Camera
Service1

Camera
Service2

Camera
Service3

Figure 6 : An example instance of Service Composition

Software engineering : an international Journal (SeiJ), Vol. 3, no. 1, april 2013 13

4.1.2. Semantic Level Composition Considering Adapta-
tion

When a service changes, a composition that includes that
service also has to be updated or all the compositions that
include that service have to be updated to make sure that
the composed service still satisfies the client’s require-
ments. For that, reevaluating the whole composition from
the start is a big overhead. Therefore, it is necessary to
perform heuristics that optimize the adaptation of the com-
position process.

The heuristics we used in adapting the composition aims
at replacing the changed service with another suitable
service or an appropriate composition pattern at the same
level of the composition tree. If that is not feasible, we
traverse one level above in the composition tree (along
with the changed service) and try to replace the parent
with a suitable service or a pattern. This process continues
up the composition tree until we are able to find a suitable
replacement or we reach the root of the composition tree.
If we reach the root, it indicates that we need re-compose

the entire system from scratch, thus, causing a significant
overhead. The following pseudo-code (Figure 7) describes
the overview of the heuristic algorithm we used in the se-
mantic composition re-evaluation.

Below we describe its usage in the context of the eDOTS,
as an example of the execution of this semantic composi-
tion adaptation algorithm.

In the eDOTS when the semantic of camera service is
changed, the above algorithm performs the following
steps. The arrows in the Figure 6 indicate the direction of
the update of the composition that is described below.

1. Query the Service repository for a service that match-
es old semantics of a camera service. If a service (a
single or composition) is found, replace the existing
camera service by this newly discovered service and
complete the adaptation process. Else, continue to
the next level.

This function returns true, if a change is required in the specification of a parent service for a given
service specification
boolean reavaluateComposition (ServiceSpecification composedSpecification)
 if not composedSpecification.isComposition() then # this is an individual service
 ServiceSpecification individualService = composedSpecification

 if not indivdiualService.changed() then # first try to replace the individual service
 ServiceRequest request = individualService.getServiceRequest()
 ServiceSpecification newService = searchCompositionService(request)
 if newService = nil then # no replacement found
 return true # report to the parent about the failure
 else # replacement found
 individualService.replaceTo(newService)
 return false # report to the parent about the success
 end
 else
 return false # no update necessary
 end
 else # processing composed services
 for each service in composedService do
 boolean changedRequired = reavaluateComposition (service)
 if changedRequired then
 ServiceRequest request = composedService.getServiceRequest()
 ServiceSpecification newService =
 searchCompositionService(request)
 if newService = nil then # no replacement found
 return true # report to the parent
about failure
 else # replacement found
 composedService.replaceTo(newService)
 return false # report to the parent
about success
 end
 end
 done
 end
 return false
end

Figure 7 : Summary of the algorithm for Adaptive Semantic Service Composition Re-evaluation

GamaGe eT aL.: a pracTicaL approach To adapTive service composiTion14

2. Query the Service repository for a service that
matches semantics of parallel composition service.
If a service (a single or composition) is found, use it
to replace the existing parallel composition service
and complete the adaptation process. Else, continue
to the next level.

3. Query the Service repository for a service that
matches semantics of the root service. If a service (a
single or composition) is found, use it to replace the
entire eDOTS and complete the adaptation process.
Else, report to the user that an adaptation is not feasi-
ble with the changed camera service.

These updated are reflected at runtime in the generated
service composition. The number of levels that the search
process will travel depends on the height of the composi-
tion tree, which in turn will be decided by a specific appli-
cation. Therefore, the composition framework allows the
user to configure the order of the algorithms, and add new
adaptation algorithms based on their domain knowledge,
such as the knowledge of which services change more
frequently and which group of services are better candi-
dates to replace another group of services. Use of such
knowledge in custom adaptation algorithm will reduce the
overhead of searching exhaustively for the replaceability
by the framework.

TABLE 2
SAMPLE CAMERA SERVICE QOS ATTRIBUTES

Response Time Accuracy Clock Drift Resolution (Pixels)
CameraService 0 – 30 ms. 0 – 500 mm 0 – 15 ms. 320 x 240

4.2. Quality of Service (QoS) level

As part of the multi-level specification, there is a need to
determine the QoS-related attributes that are appropriate
for a given distributed system so that instrumentation can
take place for handling changes related to the values of
these attributes. Table 2 shows the QoS attributes for the
camera service associated with the eDOTS.

For the QoS attributes, we would need to use heuristics to
aid in the composition process. Because of this, the heu-
ristic algorithms would need to be dynamic in nature to
handle the possibility of change, i.e., the composing agent
would need to maintain a history of execution and learn
and adjust from it. Therefore, it was necessary to evalu-
ate prevalent algorithms and select a specific one for our
prototype. After a careful study of prevalent choices, we
selected the Cross Entropy Heuristic algorithm. In this al-
gorithm, if the number of available choices for services is
high then the number of solution groups that are consid-
ered in iteration should also be high in order to get the op-
timal result. This algorithm performs in a dynamic manner
such that if optimal result requirements are not necessary
then the grouping constraint could be relaxed in an effort
to provide a higher degree of feasibility rather than opti-
mality. Because of this ability, we selected the use of this
algorithm in the QoS-based composition process. In our
previous work [5], we have provided a generic modified
version of the Cross Entropy Heuristic algorithm – shown
in Figure 8 – and used in the adaptive agent.

Service 1-1

Service 1-2

Service 1-3

Service 1-4

….

Service 2-1

Service 2-2

Service 2-3

Service 2-4

….

Service 3-1

Service 3-2

Service 3-3

Service 3-4

….

Service 4-1

Service 4-2

Service 4-3

Service 4-4

….

Service 5-1

Service 5-2

Service 5-3

Service 5-4

….

Abstract
Service 1

Abstract
Service 2

Abstract
Service 3

Abstract
Service 4

Abstract
Service 5

Figure 8 : Generic Cross Entropy Heuristic Algorithm [5]

Software engineering : an international Journal (SeiJ), Vol. 3, no. 1, april 2013 15

TABLE 3
 eDOTS SERVICES

Service Names
Camera
Service

UFilter
Service

Pattern
Repository
Service

Kalman
Filter
Service

Fusion
Service

An example of the adaptive composition between the
Camera Services and the Kalman Filter Service is shown
in Figure 9. Here the composing agent must make a deci-

5. EXPERIMENTATION & RESULTS

We empirically evaluated the composing agent and associ-
ated framework using the eDOTS as a case study. As in-
dicated earlier, the eDOTS is used to track the position of
a moving object using a set of sensors. The eDOTS is ex-
pected to provide QoS requirements, such as the response
time and the position accuracy. Therefore, the eDOTS is
an ideal candidate to test the applicability of the proposed
techniques. The services available for the eDOTS are
shown in Table 3.

Each of these services registers a service level contract
upon registration with the JINI Lookup Service. The JINI
lookup service is responsible for the task of service dis-
covery. A sample of these service level contracts is shown
in Figure 10.

Figure 10 : Sample Camera QoS Level Contract

sion about selecting an appropriate service in the presence
of a change based upon the QoS attribute of response time.

In the sample contract shown in Figure 10 we record the
name of the specific sensor as well as the specific QoS
attributes associated with said sensor. These attributes in-
clude Resolution, Frame Rate, and Clock Drift. This con-
tract is written in standard XML formatting. We now will
provide our experimental results and our analysis at both
the Semantic and QoS levels.

5.1. Semantic Analysis

The adaptive composing activity, as carried out by the
composing agent, at the semantic level of the eDOTS uses
Camera Services, Marker Repository, UFilter Service, and
Kalman Service. The composition of the eDOTS with
the default specifications (i.e., without any adaptation) is
shown in Figure 11. And this will be the composition con-
figuration when the services are not changing and referred
to as main composition configuration. In this composition,
the semantics of the services are not expected to change
during its execution life-cycle, therefore the semantics of
the composition also will not change. Therefore, the static
composition is not required to be adaptive.

Tracker

Camera Service

Camera Service

Kalman
Filter

Pattern

n
Marker

r

Positio
n

Response Time < 30ms

Figure 9 : Adaptive QoS Composition

GamaGe eT aL.: a pracTicaL approach To adapTive service composiTion16

5.1.3. Composition Alternative 3:

Composition Alternative3 occurs, when both the Camera Service and Kalman Service are changed to their alternative
specifications as shown Figure 14.

In this case study, we simulated two adaptations:
1. The Camera Service provides the filtering of the marker themselves as an alternative semantics.
2. The Kalman Service does the filtering before the fusion as an alternative semantics.

TABLE 4
THE SEMANTICS OF THE MAIN AND ALTERNATIVE SPECIFICATIONS IS SHOWN IN THE

Service Main Specification Alternative Specification
Pre-Condition Post-Condition Pre-Condition Post-Condition

Camera
Service

- [Output=VideoStream] [Input=Item.Id] [Output=
FilteredCameraReading]

Kalman
Service

[Input=
FilteredSensorReading]

[Output=Item.Position] [Input=
{SensorReading, Item.Id}]

[Output=
Item.Position]

Figure 11 : Static Semantic Composition (Main Composition Configuration)

Camera Service1

Camera Service2

Camera Service3

Marker Repository

UFilter Kalman Service

Marker ID

Position

The changes in the camera services and Kalman Service
are simulated using a timer. Because of which both the ser-
vices are changed to Main and Alternative specifications at
random times within a 20 second interval. This results into
three composition alternatives as shown in Figures 12, 13,
and 14.

5.1.1. Composition Alternative1:

Composition alternative1 occurs, when only the camera
services are changed to the alternative specification. The
Figure 12 shows the composition diagram, when all the
camera services are changed to their alternative specifica-
tions.

Camera Service1

Camera Service2

Camera Service3

Marker
Repository

Kalman Service

Position

Figure 12 : Adaptive Semantic Composition: Composition Alternative 1

Camera Service1

Camera Service2

Camera Service3

Marker
Repository

Kalman Service

Marker ID
Position

Marker Repository

Figure 14 : Adaptive Semantic Composition - Composition Alternative3

Software engineering : an international Journal (SeiJ), Vol. 3, no. 1, april 2013 17

We measure the roundtrip time in each of these three com-
position configurations.
1. Scenario1: Only the camera services alter its service

specification periodically within the 20s interval.
This will change the composite system between the
main composition configuration (Figure 11) and the
composition alternative1 (Figure 12).

2. Scenario2: Only the fusion service alter its specifi-
cation periodically within the 20s interval. This will
change the composite system between the main com-
position configuration (Figure 11) and the composi-
tion alternative2 (Figure 13).

3. Scenarion3: Both the camera services and the fusion
service alter their service specifications periodically
within the 20s interval. This will change the compos-
ite system between the main composition configu-
ration (Figure 11), composition alternative1 (Figure
12), and composition alternative2 (Figure 13) and
composition alternative3 (Figure 14).

The performance of the composite system generated in
these three scenarios is compared to evaluate the adapta-
tions described in the three scenarios above.

The round trip times of the service call in each of the
above scenarios are shown in the following graphs (Figure
15, 16, and 17).

Figure 15: Turnaround time of the tracking system for scenario1 for
sequence of requests

Figure 16: Turnaround time of the tracking system for s
cenario2 for sequence of requests

Figure 17: Turnaround time of the tracking system for scenario3
for sequence of requests

The above graphs show the variations of the turnaround
times at sequence of requests to the adaptive composed
service. These variations are due to the re-evaluation of
the composition of abstract services. The semantic compo-
sition algorithm takes different time durations for different
compositions (Main, alternative1, alternative2).

These graphs show that re-evaluation of composition
(caused by changes in some services) take different time
based on the location of the adapted service in the compo-
sition. For example, changes only in the Camera service
(Figure 15) cause less re-evaluation time than the re-eval-
uation time caused by the changes in the in Fusion service
(Figure 16). A possible reason for this behavior can be that
as the Fusion service is situated near the outputs of the
composed service (the root of composition tree), it causes
the re-evaluation of the major part of the composition tree;
whereas the Camera service is situated near the inputs of
the composition, and therefore, the changes in Camera ser-
vice has comparatively lesser impact on the composition
tree. When both the services change, as the whole compo-
sition tree has to change, rather than re-evaluating the par-
tial composition tree, the Composition Agent re-evaluates
the complete composition, which causes a lesser peak of
turn-around time in Scenario3 than Scenario2.

5.2. QoS analysis

In an effort to validate our results, we needed to exam-
ine the cause behind the additional overhead created as a
result of our experimental implementation. Therefore, an
experiment was designed in an effort to better evaluate and
examine the performance of the eDOTS in both the eager
and lazy compositions while comparing the overall end-
to-end response time (EERT) of the system in the presence
of no adaptive service composition.

Turnaround
time (ms)

Turnaround
time (ms)

GamaGe eT aL.: a pracTicaL approach To adapTive service composiTion18

This experiment was conducted using four Windows XP
Pentium 4 machines running the eDOTS. The system
times were written to a text file for future analysis. This
experiment was conducted over the period of ten minutes
of tracking. A single pattern, HiroPatt [9], was used for

An explanation of the QoS Attributes of each of the Cam-
era Services is as follows:

• Resolution: This attribute is specific to the camera
services and is specified by the user. This attribute
is limited by the hardware of the specific device,
but has the ability to be adjusted within a set range.
Therefore, this can be varied throughout the course
of a service’s execution.

• Frame Rate: This attribute provides the number of
video frames per second that the camera itself can
provide as part of the video stream. This attribute can
be specified by the user but is limited by the hard-
ware performance of the device itself.

• Clock Drift: This attribute provides the expected
clock drift that the Camera Service may encounter
as part of its execution. This average (7.6) is taken
from domain knowledge [3, 4, 5, 6] as the average

As shown in Table 6, the overhead introduced in the lazy
evaluation is minimal but is substantial in the eager evalu-
ation process. We believe this is the case because the lazy
evaluation is passive and does not introduce any additional
communication, which is extremely costly in the com-
posed system. In addition, the time in the lazy composition
process is similar to that which was found in the existing
eDOTS without any adaptation. The minor difference be-
tween these two situations is due to the attribute matching
(Resolution, Frame Rate, Clock Drift, and Rank) as well

TABLE 5
SENSOR QOS ATTRIBUTES UTILIZED DURING EXPERIMENTATION

Sensor Name Resolution Frame Rate Clock Drift Rank
Camera03 320 x 240 30 7.6 1
Camera30 640 x 360 15 7.6 2
Camera04 320 x 240 30 7.6 1
Camera40 640 x 360 15 7.6 2

TABLE 6
ADDITIONAL OVERHEAD (MILLISECONDS)

QoS Composition Type Average Time Maximum Time
Lazy 45.8 141.0
Eager 89.3 266.0
Without Adaptive Composition 39.1 128.0

tracking purposes. This tracking pattern was maintained
in the repository. The pattern was placed within the range
of the four Cameras in an effort to maximize the tracking
process. Table 5 shows the specific QoS attributes of each
of the Camera Services involved in the experimentation.

clock drift found during past experimentation with
the eDOTS. This attribute will undergo significant
fluctuations during the course of execution and thus,
is extremely dynamic.

• Rank: This attribute is initialized to a default value
but during the course of the service execution is de-
termined by the Camera Services themselves. This
attribute is defined as follows: Rank 1 – this camera
provides the highest QoS available within the sys-
tem, Rank 2 – this camera provides adequate QoS in
its ability to track an object. The first two attributes
(Resolution, Frame Rate) remain constant during the
course of object tracking while the latter two (Clock
Drift and Rank) will change over time and be subject
to system performance.

Table 6 shows the effects of both eager and lazy adaptive
QoS composition within the eDOTS when compared to a
situation without the adaptive composition.

as the time to create the composed version of the eDOTS.
In the eager evaluation process, we noticed that the over-
head is much higher due to the additional communication
required to check the current status of the services. This
overhead may be too much for certain application do-
mains to withstand and a possible future extension would
be to design a hybrid model for the dynamic adaptation,
which can switch between the lazy and eager alternatives
as needed.

Software engineering : an international Journal (SeiJ), Vol. 3, no. 1, april 2013 19

A second set of experiments was conducted in order to
evaluate the effectiveness of the service composition pro-
cess. In this set of experiments, we chose to vary a subset
of the QoS parameters of various services in a random
manner. We then examined the overall effectiveness of the
composing agent with respect to the actual modifications
of the concrete services. Effectiveness was gauged in two
parts: first with the service request being met and provid-

As show in Table 7, the overall accuracy of the composed
system is maintained or improved while using the adaptive
composition. In both the lazy and non-adaptive schemes,
we see a similar outcome in terms of both accuracy and
the number of services utilized in the tracking process. For
the eager evaluation process, because of the adaptive com-
position, we see that only two services have been selected
as part of the data fusion process. These two services have
been selected and composed based upon their dynamic at-
tributes, thus ensuring the QoS as desired by the client.
Through this analysis, while the eager evaluation provided
an improved accuracy, due to the dynamic composition, it
also caused additional overhead, which may or may not
be acceptable. This is a tradeoff that would need to be
weighed by the application domain expert when using the
eager scheme in the composition process. In either case,
our results demonstrate the feasibility of adaptive compo-
sition within a realistic distributed system application. As
a result, we have shown that through the use of Adaptive
QoS Composition we can provide a high level of accuracy
while maintaining the rigorous constraints of a real-time
tracking application.

6. CONCLUSION & FUTURE WORK

Based on the proposed composition schemes and associ-
ated empirical validation, we can draw the following infer-
ences:

• Adaptive Composition is possible within a practi-
cal distributed system such as the eDOTS using the
framework described in this paper.

• Additional overhead is introduced as part of the com-
position process, this is due to the extra processing of
the composing agent to re-evaluate the composition
and the extra communication between composing

TABLE 7
SYSTEM ACCURACY WHEN USING ADAPTIVE COMPOSITION

QoS Composition Type Lazy Eager None
Accuracy (mm) 101.2 81.3 88.8
Number of Services 4 2 4

ing a high degree of service accuracy, and second with re-
spect to the real-time timing constraints of the eDOTS. In
this experiment, we used the Kalman Filter service as the
means for providing data fusion and calculated the esti-
mated error based upon the physical measurements of the
tracking marker. This experiment was conducted on two
different machines, each with two cameras connected to
it. Each of these cameras had the same QoS attributes as

agent, repository, and services in re-locating and us-
ing services from the available services.

• It is comparatively difficult to predict the turnaround
time of the system such as eDOTS when services
change semantically as it depends upon the frequen-
cies of changes in different services.

In our experiment, we simulated the adaptive behavior
of services in the eDOTS application. Practically, when
eDOTS is integrated with sensors of a mobile phone
such as camera, GPS, and WIFI tracker, as these services
adaptively change their behavior/specifications based on
the environment such as battery level, internet connec-
tion strength, the application that has composed of those
services have to be changed accordingly. Our adaptive
composition framework attempts to hide the complexity
of such changes in the compositions by providing neces-
sary abstractions. We believe that through our analysis that
Adaptive Composition is a practical solution for dynamic
multi-level distributed systems.

• The future work related to the research on adaptive
composition includes,

• Studying and implementing adaptive composition in
syntax and synchronization contract levels.

• Experimenting with different heuristic algorithms to
improve the performance of the adaptive composi-
tion.

• Studying of tight integration of domain knowledge
to derive alternative specifications of services, alter-
native requirements of clients and alternative com-
position of systems in adaptive environments.

GamaGe eT aL.: a pracTicaL approach To adapTive service composiTion20

[17] S. Phatak, “Multilevel Specification for Adaptive Services,” Mas-
ter’s thesis, Purdue University, 2009.

[18] The OWL API, http://owlapi.sourceforge.net/, 2011.

[19] W3C OWL Working Group, “Web Ontology Language (OWL),”
http://www.w3.org/2004/OWL/. 2007.

[20] Y-S. Luo, Y. Qi, D. Hou, L-F. Shen, Y. Chen, X. Zhong, “A novel
heuristic algorithm for QoS-aware end-to-end service compo-
sition,” Computer Communication, 2010. doi:10.1016/j.com-
com.2010.02.028.

ABOUT THE AUTHORS

Dimuthu U. Gamage: Dimuthu
is a graduate student and currently
reading for his PhD in computer
science at the Department of Com-
puter and Information Science, at
IUPUI. Dimuthu’s current research
focuses on quality aware and trust-
based service composition and
generative programming in distrib-
uted software systems. Dimuthu is

a member of the software engineering and distributed sys-
tems (seds) group at IUPUI.

Ryan Rybarczyk: Ryan is a grad-
uate student and currently reading
for his PhD in computer science at
the Department of Computer and
Information Science, at IUPUI.
Ryan's research interest includes
Distributed Systems and Software
Engineering with an emphasis on
Pervasive Computing and its ap-
plications with respect to indoor

tracking systems. Ryan is a member of IEEE, ACM and
the software engineering and distributed systems (seds)
group at IUPUI.

Dr. Rajeev R. Raje : Dr. Raje is a
Full Professor and Associate Chair
in the Department of Computer
and Information Science at Indi-
ana University-Purdue University
Indianapolis (IUPUI). Dr. Raje’s
research interests are in the fields
of distributed computing, program-
ming, object/ component-based
software systems, and software

engineering. Prof. Raje is a member of the software engi-
neering and distributed systems (seds) group at CIS, IU-
PUI. Prof. Raje is a member of the ACM and IEEE.

REFERENCES

[1] A. Beugnard, J.M. Jézéquel, N. Plouzeau, D. Watkins, “Making
Components Contract Aware,” IEEE Computer, Vol. 13, no. 7,
1999.

[2] A. Bracciali, A. Brogi, C. Canal, “A formal approach to compo-
nent adaptation,” J. System Software, Vol. 74, pp. 45-54, 2005,
DOI=10.1016/j.jss.2003.05.007 http://dx.doi.org/10.1016/j.
jss.2003.05.007.

[3] B. Zhang, Y. Shi, X. Xiao, “A Policy-Driven Service Composition
Method for Adaptation in Pervasive Computing Environment,”
Comput. J., Vol. 53, no. 2, pp. 152-165, 2010. DOI=10.1093/com-
jnl/bxm103 http://dx.doi.org/10.1093/comjnl/bxm103.

[4] C. Dabrowski, K. L. Mills, S. Quirolgico. “A Model-based Analysis
of First Generation Service Discovery Systems,” NIST Special Pub-
lication, pp. 500-260, 2005.

[5] D. Gamage, R. Gamage. “QoS Aware Service Composition Frame-
work,” Indiana University Purdue University Indianapolis – Com-
puter Science Department, 2011.

[6] D. Hemer, “A formal approach to component adaptation and com-
position,” in Proceedings of the Twenty-eighth Australasian confer-
ence on Computer Science , Australia, Vol. 38, pp. 259-266, 2005.

[7] Hermit OWL Reasoner, http://hermit-reasoner.com/, 2011.

[8] J. Camara, G. Salaun, and C. Canal, “Run-time Composition
and Adaptation of Mismatching Behavioural Transactions,” in
Proceedings of the Fifth IEEE International Conference on Software
Engineering and Formal Methods (SEFM '07), IEEE Computer So-
ciety, Washington, DC, USA, pp. 381-390, 2007. DOI=10.1109/
SEFM.2007.35, http://dx.doi.org/10.1109/SEFM.2007.35, 2007.

[9] Kato H., Billinghurst M., “Marker Tracking and HMD Calibration
for a video-based Augmented Reality Conferencing System,” pp.
85-94, San Francisco, 1999.

[10] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng,
“Composing Adaptive Software,” Computer, Vol. 37, no. 7, pp. 56-
64, 2004. DOI=10.1109/MC.2004.48, http://dx.doi.org/10.1109/
MC.2004.48, 2004.

[11] Portege team, “The Portege Ontology Editor and Knowledge Ac-
quisition System,” http://protege.stanford.edu/. 2011.

[12] R. Rybarczyk, R. Raje, M.Tuceryan. “A Heterogeneous Indoor
Tracking System,” Indiana University Purdue University Indian-
apolis – Computer Science Department, 2012. TR-CIS-0125-12,
2012.

[13] R. Rybarczyk, R. Raje, M. Tuceryan, “Enhancing a Distributed
Tracking System,” in Proceedings of 3rd International Joint Con-
ference on Information and Communication Technology (IJcICT),
Mumbai, India, pp. 7, 2011.

[14] R. Rybarczyk, “e-DTS 2.0 – A Next-Generation of a Distributed
Tracking System,” Master’s thesis, Purdue University, 2010.

[15] R. Rybarczyk, R. Raje, and M. Tuceryan, “e-DTS 2.0 - A next-
generation of a Distributed Tracking System,” in Proceedings
of the International Conference on "On Demand Computing"
(ICODC-2010), Bangalore, India, 2010.

[16] R. Aschoff, A. Zisman, “QoS-Driven proactive adaptation of service
composition,” in Proceedings of the 9th international conference
on Service-Oriented Computing (ICSOC'11), Gerti Kappel, Zakaria
Maamar, and Hamid R. Motahari-Nezhad (Eds.). Springer-Verlag,
Berlin, Heidelberg, pp. 421-435. DOI=10.1007/978-3-642-25535-
9_28 http://dx.doi.org/10.1007/978-3-642-25535-9_28, 2011.

