Dr Yeshwant Singh

Computer Science and Engineering

Phone:XXXXXXXXXX
Email: yeshwant.singh@dtu.ac.in

Qualifications

B.Tech, M.Tech, Ph.D

Areas of Interest

Deep Learning, Audio Signal Processing, Graph Neural Networks, Non-Euclidean Spaces


Address: Room No. 310B, Academic Block-4, Department of Computer Science and Engineering, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi-110042, India.

Google Scholar: https://scholar.google.com/citations?user=DFFGMLUAAAAJ&hl=en

ORCID: https://orcid.org/0000-0002-4387-4002

ResearchGate: https://www.researchgate.net/profile/Yeshwant-Singh

LinkedIn: https://www.linkedin.com/in/yeshwantsingh

GitHub: https://github.com/yeshwantsingh


Publications

Patents

  • Yeshwant Singh and Anupam Biswas, A system for classifying melodies using swaragram representation (Ein System Zur Klassifizierung Von Melodien Mittels Swaragrammdarstellung), Germany Patent, Status: Published, File Number: 202022100306.8.
  • Yeshwant Singh and Anupam Biswas, A neural network system for music genre classification based on evolutionary stochastic hyperparameter selection (Ein neuronales Netzwerksystem zur Klassifizierung von Musikgenres auf der Grundlage einer evolutionären stochastischen Hyperparameterauswahl), Germany Patent, Status: Granted, File Number: 202022105338.3.

Journals

  • Shubhi Sharma, Tanupriya Choudhury, Yeshwant Singh, Advanced feature extraction for mammogram mass classification: a multi-scale multi-orientation framework,  International Journal on Smart Sensing and Intelligent Systems, Sciendo, https://doi.org/10.2478/ijssis-2025-0022
  • Yeshwant Singh, Anupam Biswas, Lightweight CNN Architecture Design for Music Genre Classification using Evolutionary Stochastic Hyperparameter Selection, Expert Systems, Wiley, https://doi.org/10.1111/exsy.13241.
  • Lilapati Waikhom, Yeshwant Singh, Ripon Patgiri, PO-GNN: Position-Observant Inductive Graph Neural Network for Position-Based Prediction, Information Processing and Management, Elsevier, https://doi.org/10.1016/j.ipm.2023.103333.
  • Yeshwant Singh, Lilapati Waikhom, and Anupam Biswas, Swaragram: A software toolbox for musical feature of Indian music, Software Impacts, Elsevier, https://doi.org/10.1016/j.simpa.2022.100462.
  • Yeshwant Singh, Anupam Biswas, Robustness of Musical Features on Deep Learning Models for Music Classification, Expert Systems with Application, Elsevier, https://doi.org/10.1016/j.eswa.2022.116879.

Book Chapters

  • Yeshwant Singh, Anupam Biswas, Computational Approaches for Indian Classical Music: A Comprehensive Review, Advances in Speech and Music Technology, Springer, pp 91-118, https://doi.org/10.1007/978-3-031-18444-4_5. 
  • Yeshwant Singh, Anupam Biswas, Angshuman Bora, Debashish Malakar, Subham Chakraborty, and Suman Bera, Design Perspectives of Multi-task Deep-Learning Models and Applications, Machine Learning Algorithms for Signal and Image Processing, IEEE-Wiley Publication, pp 45-63, https://doi.org/10.1002/9781119861850.ch4.
  • Yeshwant Singh, Anupam Biswas, Adaptation of Nature Inspired Optimization Algorithms for Deep Learning, Applications of Nature-inspired Computing and Optimization Techniques, Advances in Computers, Elsevier, pp 417-455, https://doi.org/10.1016/bs.adcom.2023.12.005

Conferences

  • Shubhi Sharma and Yeshwant Singh. Enhancing Breast Cancer Detection Using A Transformer-Based Model, In 2024 International Conference on Information Science and Communications Technologies (ICISCT), Seoul, Republic of Korea, 2024, pp. 264-269, IEEE, 2024.
  • Yeshwant Singh, Yatin Gupta, Subham Patar, Anurag Saraswat, Anupam Biswas. Transcription of indian classical music using convolutional recurrent neural network and ctc loss. In 2023 International Conference on Intelligent Systems, Advanced Computing and Communication (ISACC), pp 1–6. IEEE, 2023.
  • Yeshwant Singh, Shuvraneel Roy, Yash Tripathi, Anupam Biswas. Segmented sequence modeling using variational autoencoder for landmark detection in indian classical music. In 2022 IEEE Silchar Subsection Conference (SILCON), pp 1–7. IEEE, 2022.
  • Yeshwant Singh, Ranjeet Kumar, Anupam Biswas. Swaragram: Shruti-based chromagram for indian classical music. In Advances in Speech and Music Technology, pp 109–118. Springer, 2021. 
  • Yeshwant Singh, Anupam Biswas. Swaragram based residual neural architecture for raag identification in indian classical music. In 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), pp 1–6. IEEE, 2021.
  • Yeshwant Singh,  Anupam Biswas. Multitask learning based deep learning model for music artist and language recognition. In Proceedings of the Workshop on Speech and Music Processing 2021, pp 20–23, NIT Silchar, India, December 2021. NLP Association of India (NLPAI).
  • Yeshwant Singh, Anupam Biswas. Deep learning based tonic identification in indian classical music. In 2021 5th Conference on Information and Communication Technology (CICT), pp 1–6. IEEE, 2021.
  • Ranjeet Kumar, Anupam Biswas, Pinki Roy, Yeshwant Singh. Comparative analysis of melodia and time-domain adaptive filtering based model for melody extraction from polyphonic music. In Proceedings of the Workshop on Speech and Music Processing 2021, pp 24–32, NIT Silchar, India, December 2021. NLP Association of India (NLPAI).
  • Yeshwant Singh and Subhasish Banerjee. Fake (sybil) account detection using machine learning. In Proceedings of International Conference on Advancements in Computing & Management (ICACM), 2019.

Datasets

  • Yeshwant Singh and Anupam Biswas, Multitask Carnatic Music Dataset. Zenodo, https://doi.org/10.5281/zenodo.7388670.
  • Yeshwant Singh and Anupam Biswas, Indian Regional Music Dataset. Zenodo, https://doi.org/10.5281/zenodo.6546501.
  • Yeshwant Singh and Anupam Biswas, Multitask Carnatic Music Dataset. Zenodo, https://doi.org/10.5281/zenodo.7388670.
  • Yeshwant Singh and Anupam Biswas, Multitask Hindustani Music Dataset. Zenodo, https://doi.org/10.5281/zenodo.7388673.
  • Yeshwant Singh, Yash Tripathi, Shuvraneel Roy and Anupam Biswas, Hindustani Music Nyas Dataset. Zenodo, https://doi.org/10.5281/zenodo.6817326.
  • Yeshwant Singh, Yash Tripathi, Shuvraneel Roy and Anupam Biswas, Hindustani Music Alankar Dataset. Zenodo, https://doi.org/10.5281/zenodo.6817380.
  • Lilapati Waikhom, Yeshwant Singh and Anupam Biswas, Indian Semi-Classical Music Dataset. Zenodo, https://doi.org/10.5281/zenodo.6584259.
  • Yeshwant Singh, Lilapati Waikhom, Vivek Meena and Anupam Biswas, Indian Folk Music Dataset. Zenodo, https://doi.org/10.5281/zenodo.6584021.

Reviewer

  • Scientific Reports, Nature
  • Transactions on Neural Networks and Learning Systems, IEEE
  • Knowledge-Based Systems, Elsevier
  • Engineering Applications of Artificial Intelligence, Elsevier
  • Neurocomputing, Elsevier
  • Journal of Big Data, Springer
  • The Journal of Supercomputing, Springer
  • Multimedia Systems, Springer
  • Evolving Systems, Springe

Membership

  • Member, IEEE
  • Member, ACM


Courses Taught

  • Data Structures and Algorithms
  • Design and Analysis of Algorithms
  • Computer Networks
  • Web Technologies
  • Deep Learning
  • Pattern Recognition
  • Intro to Artificial Intelligence
  • Applications of Machine Learning in Industries
  • Python Programming

Supervision

  • Ph.D. Supervision: 1 (Ongoing)
  • M.Tech. Supervision: 2 (Completed)
  • B.Tech. Supervision: 10+ (Completed)

Last Updated : 2025-06-02 17:21:44