Professor Naokant Deo

Applied Mathematics

Phone:+91-11-27852217
Email: naokantdeo@dce.ac.in

Qualifications

M. Sc.(Mathematics), Ph. D.(Approximation Theory)

Areas of Interest

Approximation Theory and Real Analysis

Honours and Awards

CAS-TWAS Postdoctoral Fellowship-2005, (Chinese Academy of Sciences, Beijing, China and International Centre for Theoretical Physics, Trieste, Italy).

SCHOLARLY ACTIVITIES

  1. Expert of Union Public Service Commission (UPSC).
  2. External Expert from Academia of Board of Studies (BoS) in Mathematics under the faculty of Scientific Skills, Delhi Skill and Entrepreneurship University (DSEU), Delhi, w.e.f. 31st May 2024.
  3. Member of the Special Committee of the School of Physical Sciences, Jawaharlal Nehru University, New Delhi, w.e.f. January 2021.
  4. Honorary Professor, Department of Distance & Continuing Education at the University of Delhi, Delhi, w.e.f. March 2022.
  5. Member of Board of Studies, Department of Mathematics, Gautam Buddha University, UP, 2022-2023.
  6. Member of the board of studies (BOS), Department of Mathematics, Jaypee Institute of Information Technology (JIIT), Noida, UP, w.e.f. November 2023.
  7. Member of Governing Body (University Representative), Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, 2022-23.
  8. Member of Governing Body (University Representative), Kamala Nehru College, University of Delhi, 2020-2021.
  9. Member of the board of studies (BOS) of Rungta Engineering College & Technology, Bhilai, Chhattisgarh, w.e.f. February 2023.

Ph. D. THESES SUPERVISED/UNDER SUPERVISION:

Ph. D. awarded (Individually) by DTU, Delhi:

  1. Neha Bhartdvaj: Some problems in approximation for certain discrete and integral operators.
  2. Minakshi Dhamija: Convergence Estimates for Certain Linear Positive Operators.
  3. Ram Pratap: Certain Approximation Methods of Convergence for Linear Positive Operators.
  4. Navshakti Mishra: A study on estimates of Convergence of Certain Approximation Operators.
  5. Chandra Prakash: Analysis of Certain Approximation Operators.
  6. Lipi: Approximation of Functions by Certain Positive Linear Methods of Convergence.
  7. Neha: Study on Some Generalised Approximation Operators.

Ph. D. registered in DTU, Delhi:

  1. Sandeep Kumar: Convergence analysis of some Approximation Operators.
  2. Kanita: A study on the approximation order of positive linear operators by certain approximation methods.
  3. Kapil:  Study on Convergence of Certain Approximation Operators.
  4. Mahima: Approximation of operators by certain Approximation Methods.

ADMINISTRATIVE EXPERIENCE

  1. Head of Department of B.Tech. (B. Tech. Programme Under Continuing Education) , DTU, 2018 - 2022
  2. Member of the board of studies (BOS) of Rungta Engineering College $&$ Technology, Bhilai, Chhattisgarh, w.e.f. February $2023$.
  3. Chairman B.Tech.(Evening), Admission Examination 2018, 2019, 2020, 2021, 2022
  4. Dy. Controller of Examination, DTU, 2013-2017
  5. Hostel Warden 2003-2006 

Membership in Academic Bodies/Societies

  1. Life member of the Indian Mathematical Society (IMS), INDIA.
  2. Member of Research Group in Mathematical Inequalities and Applications (RGMIA), Melbourne, AUSTRALIA.
  3. A regular World Academy of Young Scientists (WAYS) member, Budapest, HUNGARY.

Reviewer:

  1. Member of reviewer’s panel of American Mathematical Society (AMS).
  2. Member of reviewer’s panel of Zentralblatt MATH.
  3. Various International and National Journals.

Conference and Course Organized:

  1. International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM), 23-25 October 2018.
  2. AICTE sponsored a staff development programme on Soft Computing using Matlab and LaTeX at a Glance, 7-18 December 2009.

Associated with Professional Societies:

  1. Member of Research Group in Mathematical Inequalities and Applications (RGMIA), Melbourne, Australia.
  2. A regular World Academy of Young Scientists (WAYS) member, Budapest, Hungary.
  3. Life member of the Indian Mathematical Society (IMS), India.

Invited Speaker/Keynote Speaker/Chairperson:

  1. Speaker: 1st International Conference on ``Role of Applied Science in Social Implications (IC-RASSI)", Certain Positive Linear Operators and Approximation Methods, Govt. Digvijay Autonomous P.G. College Rajnandgaon, Chhattisgarh, India, $6-8$ February $2023$.
  2. Speaker: Convergence Estimates - an overview, Refresher Course on ``Non-linear Analysis for the Development of Neural Network System" Department of Mathematics, G. G. University, Bilaspur, Chhattisgarh,  24th September 2021.
  3. Speaker: Direct Estimates in Approximation, Refresher Course in Applied Mathematics, Ranchi University, Ranchi, Jharkhand, 23rd September 2021.
  4. Keynote Speaker: Integral Modification of Positive Linear Operators, International Conference on ''Mathematical Modeling and High-Performance Computing in Science and Technology”, RGPV, Bhopal (M. P), February 12 - 13, 2020.
  5. Speaker: A Generalisations of Positive Linear Operators and Its Variants, ''International Conference on Mathematical Analysis and its Application (ICMAA-2019)”, Department of Mathematics, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India, December 14 - 16, 2019.
  6. Speaker: Approximation Operators and their Variants, ''Workshop on Recent Trends in Physical Sciences & its Applications”, Department of Mathematics, Dr Bhimrao Ambedkar University, Agra, November 7-8, 2019.
  7. Chair Person: "International Conference on Recent Advances in Pure and Applied Mathematics", Delhi Technological University, Delhi, October 23-25, 2018.
  8. Speaker: "International Conference of CONIAPS-XIV", Sardar Vallabhbhai National Institute of Technology, Surat, December 22-24, 2011.
  9. Speaker/Chair Person: "Some problems related to linear positive operators, NCKMS-2009", National Conference on Establishing Kinship between Mathematical Sciences & Society, Durg, Chhattisgarh, October 30-31, 2009.

Books Published :

  1. ''Introduction to Mathematical Analysis'', Authors: Naokant Deo, Ryozi Sakai, Springer-Verlag, Softcover ISBN: 978-981-15-1159-2.
  2. "Mathematical Analysis I – Approximation Theory'', ICRAPAM 2018, New Delhi, India, October 23-25, Editors: Deo, Naokant, Gupta, V., Acu, A.M., Agrawal, P.N.(Eds.), Springer-Verlag, Print ISBN 978-981-15-1152-3; Electronic ISBN 978-981-15-1153-0.
  3. "Mathematical Analysis II – Optimisation, Differential Equations, and Graph Theory'', ICRAPAM 2018, New Delhi, India, October 23-25, Editors: Deo, Naokant, Gupta, V., Acu, A.M., Agrawal, P.N.(Eds.), Springer-Verlag Print ISBN: 978-981-15-1156-1; Electronic ISBN: 978-981-15-1157-8.

Recent Publications:

  • M. Tomar and Naokant Deo, ``Theoretical validation and comparative analysis of higher-order modified Bernstein operators", Iran. J. Sci. (2024), SCIE, I.F. 1.7 (Accepted).
  • Kanita and Naokant Deo, ''Parametric Bernstein operators based on contagion distribution” Math. Methods Appl. Sci., (2024), SCIE, I.F. 3.007 (Accepted).
  • Sandeep Kumar and Naokant Deo, ''Convergence analysis of semi-exponential Post-Widder operators", Miskolc Math. Notes, (2024), SCIE, I.F. 1.085, Accepted.
  • Neha and Naokant Deo, ''Generalization of parametric Baskakov operators based on the I-P-E distribution",  FILOMAT, SCIE (2023), Accepted.
  • Neha and Naokant Deo, ''An approach to preserve functions with exponential growth by using modified Lupac{s}-Kantrovich operators", Numer. Funct. Anal. Optim., (2023), SCIE, I.F. 1.41, url{https://doi.org/10.1080/01630563.2023.2263977}
  • Neha and Naokant Deo, "Iterative combinations of generalised operators", Matematicki Vesnik,  ESCI (2023), Accepted.
  • Naokant Deo and Km. Lipi, ''Approximation by means of modified Bernstein operators with shifted knots,'' The Journal of Analysis, SCOPUS (2023) Accepted.
  • Km. Lipi and Naokant Deo, "$lambda$-Bernstein operators based on Polya distribution", Numer. Funct. Anal. Optim., SCIE,  44(6)(2023), 529-544, https://doi.org/10.1080/01630563.2023.2185896.
  • Neha, and Naokant Deo "Integral modification of Beta-Apostol-Genocchi operators'', Math. Found. Comp., ESCI, (2022), Doi: 10.3934/mfc.2022039
  • Chandra Prakash, D. K. Verma and Naokant Deo, "Approximation by Durrmeyer variant of  Cheney-Sharma Cholodovsky Operators", Math. Found. Comp., ESCI, (2022), Doi: 10.3934/mfc.2022034
  • Naokant Deo, Chandra  Prakash, D. K.  Verma, "Approximation by Apostol-Genocchi summation-integral type operators", Miskolc Math. Notes, SCIE(2022), in press.
  • Nav Shakti Mishra and Naokant Deo, "Approximation by generalized Baskakov Kantorovich operators of arbitrary order", Bull. Iranian Math. Soc., SCIE, Springer-Verlag, 48(2022), 3839–3854.
  • Km. Lipi and Naokant Deo, "Approximation properties of modified Gamma operators preserving t^{v}", Annals of Functional Analysis,  SCIE, Birkhäuser (2022), https://doi.org/10.1007/s43034-022-00172-x.
  • Nav Shakti Mishra and Naokant Deo, "Convergence Estimates of certain Gamma type operators'', Math. Methods Appl. Sci.SCIE,  Wiley, (2021), in press.
  • Nurhayat Ispir, Naokant Deo, and Neha Bhardwaj "Approximation of Jain operators by statistical convergence'',  Thai J. Math., ESCI, 19(4) (2021),
  • Neha, Ram Pratap, and Naokant Deo, "Bezier variant of summation-integral type operators" Rend. Circ. Mat. Palermo, II. Ser (2022), ESCI, Springer-Verlaghttps://doi.org/10.1007/s12215-021-00695-7.
  • Minakshi Dhamija, Naokant Deo, Ram Pratap, Ana Maria Acu, "Generalized Durrmeyer operators based on inverse Polya-Eggenberger distribution'', Afr. Mat., ESCI, Springer-Verlag, (2021), in press.
  • Chandra Prakash, D.K. Verma, and Naokant Deo "Approximation by a new sequence of operators involving Apostol-Genocchi polynomials", Math. Slovaca, SCIE, De Gruyter, 71 (2021), No. 5, 1179-1188.
  • Nav Shakti Mishra and Naokant Deo, "Approximation by a composition of Apostol-Genocchi and Paltanea-Durrmeyer operator", ESCI, Kragujevac J. Math, 48(4) (2024), 629-646.
  • Neha and Naokant Deo, "Integral modification of Apostol-Genocchi operators", SCIE, Filomat 35:5 (2021), 1465–1475.
  • Sandeep Kumar and Naokant Deo, "Approximation of generalized Paltanea and Heilmann-type operators", Matematicki Vesnik,  ESCI, 74(2)(2022), 101-109.
  • Km. Lipi and Naokant Deo, "On modification of certain exponential type operators preserving constant and $e^{-x}$", Bull. Malays. Math. Sci. Soc., SCIE, Springer-Verlag, (2021), in press.
  • Nav Shakti Mishra and Naokant Deo, "On the preservation of functions with exponential growth by modified Ismail-May operators'', Math. Methods Appl. Sci., SCIE,  Wiley, (2021), in press.
  • Ram Pratap and Naokant Deo, "A family of Bernstein-Kantorovich operators with shifted knots", Rendiconti del Circolo Matematico di Palermo Series 2, ESCI, Springer-Verlag, (2021), doi.org/10.1007/s12215-021-00677-9
  • Naokant Deo and Ram Pratap, "The family of Sz'asz-Durrmeyer type operators Involving Charlier Polynomials", ESCI, Kragujevac J. Math, 47(3)(2023), 431-443.
  • Naokant Deo and Sandeep Kumar, "Durrmeyer Variant of Apostol-Genocchi-Baskakov Operators", Quaest. Math. SCIE, Taylor & Francis, (2020),  doi.org/10.2989/16073606.2020.1834000.
  • Neha and Naokant Deo, "Convergence and Difference Estimates Between Mastroianni and Gupta Operators", ESCI, Kragujevac J. Math, 47(2)(2023), 259-269.
  • Nav Shakti Mishra and Naokant Deo, "Kantorovich Variant of Ismail-May Operators", Iran. J. Sci. Technol. Trans. A Sci., SCIE, Springer-Verlag, (2020), doi.org/10.1007/s40995-020-00863-x
  • Km. Lipi and Naokant Deo, "General family of exponential operators", SCIE, Filomat, Vol 34, No 12 (2020)
  • Naokant Deo and Ram Pratap, "Approximation by Mixed Positive Linear Operators based on Second-Kind Beta Transform", Asian-Eur. J. Math., SCIE, World Scientific (2020), In-press.
  • Ram Pratap and Naokant Deo, "α-Bernstein-Kantorovich operators", Afr. Mat., ESCI, Springer-Verlag, 31 (2020), 609-618.
  • Naokant Deo and Ram Pratap, "Approximation by integral form of Jain and Pethe operators", Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, SCIE, Springer-Verlag, (2020), doi.org/10.1007/s40010-020-00691-z
  • Ram Pratap and Naokant Deo, "q-Analogue of generalized Bernstein-Kantorovich operators", Mathematical Analysis-I, Approximation Theory, ICRAPAM - 2018, New Delhi, India, October 23-25, Springer-Verlag, Scopus (2020), 67-75.
  • Naokant Deo, Minakshi Dhamij and Dan Miclaus, "New Modified Baskakov Operators Based On The Inverse Polya-Eggenberger Distribution",  SCIE, Filomat, 33:11 (2019), 3537–3550.
  • Ram Pratap and Naokant Deo, "Rate of convergence of Gupta-Srivastava operators based on certain parameters", J. Class. Anal., 14(2) (2019), 137-153.
  • Ram Pratap and Naokant Deo, "Approximation by genuine Gupta–Srivastava operators", Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, Springer-Verlag , Scopus, 113(2019), 2495-2505.
  • Naokant Deo and Minakshi Dhamija, “Generalized positive linear operators based on PED and IPED”, Iran. J. Sci. Technol. Trans. A Sci., SCIE, Springer-Verlag, (2018), 1-7.
  • Minakshi Dhamija, Ram Pratap and Naokant Deo, “Approximation by Kantorovich form of modified Szasz-Mirakyan operators”, Appl. Math. Comput., SCI, Elsevier  317 (2018), 109-120.
  • Minakshi Dhamija and Naokant Deo “Approximation by generalized positive linear-Kantorovich operators”, SCIE, Filomat, 31:14 (2017), 4353-4368.
  • Naokant Deo and Minakshi Dhamija, “Charlier-Szasz-Durrmeyer type positive linear operators, Afr. Mat., ESCI, Springer-Verlag. DOI 10.1007/s13370-017-0537-1, (2017).
  • Naokant Deo and Minakshi Dhamija, “Better approximation results by Bernstein-Kantorovich operators”, Lobache vskii J. Math., SCIE, Springer-Verlag., Vol. 38(1)(2017), 94-100.
  • Naokant Deo and Neha Bhardwaj, “Quantitative estimates for generalized two-dimensional Baskakov operators”, Korean J. Math., ESCI, 24(3) (2016), 335-344.
  • Naokant Deo and Neha Bhardwaj, Direct and Inverse Theorems for Beta-Durrmeyer Operators, Modern Mathematical Methods and High-Performance Computing in Science and Technology, series Springer Proceedings in Mathematics & Statistics Vol. 171(2016), 179-191 Springer-Verlag.
  • Minakshi Dhamija and Naokant Deo, Jain-Durrmeyer operators associated with the inverse Polya-Eggenberger distribution”, Appl. Math. Comput. SCI, Elsevier, Vol. 286 (2016), 15-22.
  • Naokant Deo, Minakshi Dhamija and Dan Miclaus, “Stancu-Kantorovich operators based on inverse Polya-Eggenberger distribution”, Appl. Math. Comput. SCIE, Elsevier, Vol. 273(1) (2016), 281-289.
  • Minakshi Dhamija, Ryozi Sakai and Naokant Deo, “On approximation by Phillips type modified Bernstein operator in a mobile interval”, J. Class. Anal., Vol. 7(1)(2015), 25-37.
  • Naokant Deo and Neha Bhardwaj, “A better error estimation on Balazs operators”, Lobache Vskii J. Math. SCIE, Springer-Verlag., Vol. 36(1)(2015), 9-14.
  • Naokant Deo, Mehmet Ali Ozarslan, and Neha Bhardwaj, “Statistical convergence for general Beta operators”, Korean J. Math., 22(2014), No. 4, 671-681.
  • H. S. Jung, Naokant Deo and Minakshi Dhamija, “Pointwise approximation by Bernstein type operators in mobile interval”, Appl. Math. Comput., SCI, Elsevier, Vol. 214(1) (2014), 683-694.
  • Dan Barbosu and Naokant Deo, “Some Bernstein-Kantorovich operators”, Automation Computers Applied Mathematics, SCIE Vol. 22(1) (2013), 15-21.
  • Naokant Deo, H. S. Jung and R. Sakai, “Degree of approximation by hybrid operators”, Abstract and Applied Analysis, SCIE, Vol. (2013), Article ID 732069, 8 pages.
  • Naokant Deo, Neha Bhardwaj and S. P. Singh, “Simultaneous approximation on generalized Bernstein-Durrmeyer operators”, Afr. Mat., ESCI, Springer-Verlag, Vol. 24(1) (2013), 77-82.
  • V. Gupta, Naokant Deo and Xiao-Ming Zeng, “Simultaneous approximation for Szasz-Mirakian-Stancu-Durrmeyer operators”, Anal. Theory Appl., Vol. 29(1) (2013), 86-96.
  • Naokant Deo and Neha Bhardwaj, “A better error estimation on Szasz-Baskakov-Durrmeyer operators”, Springer-Verlag, Scopus, Proceedings in Mathematics & Statistics, [Chapter 21], Advances in Applied Mathematics and Approximation Theory, Vol. XIX(2013), 329-337.
  • Naokant Deo, "Faster rate of convergence on Srivastava-Gupta operators", Appl. Math. Comput. SCI, Elsevier, Vol. 218(21) (2012), 10486-10491.
  • P. Verma, S. P. Singh, A. S. Randive and Naokant Deo, "On the Degree of $L_1$-Approximation by Meyer-Konig Zeller operators" SEA. Bull. Math., Vol. 35 (2011), 523-528.
  • V. Gupta and Naokant Deo, "A note on improved estimations for integrated Szasz-Mirakyan operators", Math. Slovaca, SCIE, De Gruyter, Vol. 61(5) (2011), 799-806.
  • V. Gupta and Naokant Deo, "A Note on rate of approximation for certain Bezier-Durrmeyer operators, Mat. Vesnik., ESCI,  Vol. 63(1) (2011), 27-32.
  • Naokant Deo and Neha Bhardwaj, "On the degree of approximation by modified Baskakov operators", Lobachevskii J. Math., Springer-VerlagSCIE, Vol. 32(1) (2011), 16-22.
  • Naokant Deo and Neha Bhardwaj, "Some approximation results for Durrmeyer operators", Appl. Math. Comput. SCIE, Elsevier, 217(12) (2011), 5531-5536.
  • Naokant Deo and Neha Bhardwaj, "Some approximation theorems for multivariate Bernstein operators",  SEA. Bull. Math., Vol. 34 (2010), 1023-1034.
  • Naokant Deo, "On the degree of approximation for bivariate Lupacs type operators", J. Appl. Math. Inform., Vol. 28, No. 5-6 (2010), 1101-1116.
  • Naokant Deo and S. P. Singh, "On the degree of approximation by new Durrmeyer type operators", General Math., Vol. 18, No. 2 (2010), 195-209.
  • Naokant Deo, "Pointwise estimate for modified Baskakov type operator}, Lobachevskii J. Math., Vol. 31, No. 1 (2010), 36-42, Springer-Verlag., SCIE
  • Naokant Deo, "Direct result on exponential-type operators" Appl. Math. Comput. SCI, Elsevier, 204 (2008), 109-115.
  • Naokant Deo, M. A. Noor and M. A. Siddiqui, "On approximation by a class of new Bernstein type operators", Appl. Math. Comput. SCI, Elsevier, 201 (2008), 604-612.
  • Naokant Deo, "Direct result on the Durrmeyer variant of Beta operators", SEA. Bull. Math., Vol. 32 (2008), 283-290.
  • Naokant Deo and D. Yan. "Simultaneous approximation on Szasz-Mirakian-Baskakov type operators", Acta Math. Sinica, Vol. 50, No. 6 (2007), 1257-1262.
  • Naokant Deo, "On the iterative combinations of Baskakov operator", General Math., Vol. 15, No. 1 (2007), 51-58.
  • Naokant Deo, "Equivalent theorem on Lupacs operator", J. Inequal. Pure and Appl. Math., Vol. 8, Issue 4, (2007), 1-9.
  • Naokant Deo, "Voronovskaya type asymptotic formula for Lupacs-Durrmeyer operators", Rev. Un. Mat. Argentina., SCIE, Vol. 48, No. 1 (2007), 47-54.
  • Naokant Deo, "A note on equivalence theorem for Beta operators", Mediterr. J. Math. SCIE, Springer-Verlag, Vol. 4, No. 2, (2007), 245-250.
  • Naokant Deo, "Quantitative estimate of approximation by exponential-type operators", SEA. Bull. Math., Vol.31, (2007), 465-470.
  • Naokant Deo, "Simultaneous approximation by two-dimensional hybrid positive linear operators" General Math., Vol. 14, No. 4 (2006), 15-28.
  • Naokant Deo, "Simultaneous approximation by two-dimensional Lupac{s}-Durrmeyer operators", J. of Math. Anal. and Approximation Theory, Vol. 1, No. 2, (2006), 180-188.
  • Naokant Deo, "Direct and inverse theorems for Sz'{a}sz-Lupac{s} type operators in simultaneous approximation", Mat. Vesnik., Vol. 58, No.1-2, (2006), 19-29.
  • V. Gupta and Naokant Deo, "On the rate of convergence for bivariate Beta operators, General Math., Vol. 13, No. 3 (2005), 107-114.
  • Naokant Deo "Simultaneous approximation for the linear combinations of modified Beta operators, Austral. J. of Math. Anal. and Appl., Vol. 2, No. 2, Art. 4, (2005), 1-12.
  • Naokant Deo, "On the Rate of Convergence of modified Baskakov type operators on functions of bounded Variation", Kyungpook Math. J., ESCI, 45(2005), 71-77.
  • Naokant Deo, "Simultaneous approximation by Lupacs modified operators with weighted function of Sz'{a}sz operators", J. Inequal. Pure and Appl.  Math., 5(4) Art. 113, (2004), 1-5.
  • Naokant Deo, "Lupas-Durrmeyer operators", J. Inequal. Pure and Appl. Math., 5(4) Art. 103, (2004), 1-5.

Conference Attended:

  1. 12th International Conference on Approximation Theory and its Applications", Lucian Blaga University of Sibiu, Romania, May 26-29, (2016).
  2. International Conference on Recent Advance in Mathematical Biology", Analysis and Applications, AMU, Aligarh, India, June 4-6, (2015).
  3. International Conference on Recent Trends in Mathematical Analysis and its Applications", IIT Roorkee in Roorkee, India, December 21-23, (2014).
  4. Faster Rate of Convergence on Modified Discrete and Integral Operators}, ``International Conference on Theory of Approximation of Functions and its Applications" Kamianets-Podilsky Ivan Ohienko National University, Kamianets-Podilsky, Ukraine, (2012).
  5. ICAA, International Conference on Analysis and Applications; Anhui, Hefei, CHINA, June 28- July 1, 2006.
  6. ICAHA, International Conference on Applicable Harmonic Analysis: Approximation and Computation; Beijing, CHINA, June 17-21, 2006.
  7. International Conference on Mathematical Inequalities and their Applications; I Victoria University, Melbourne, Victoria, AUSTRALIA, December 06 - 08, 2004.

Google Scholar: http://scholar.google.co.in/citations?user=7LGCB9wAAAAJ&hl=en

Researchgate: Naokant Deo (researchgate.net)

 

 

 

Last Updated : 2024-08-10 11:04:20