
Greedy Methods

Manoj Kumar

DTU, Delhi

Greedy algorithms

• A greedy algorithm is an algorithm that follows

the problem solving heuristic of making the locally

optimal choice at each stage with the hope of finding

a global optimum.

Optimization problems

• An optimization problem is one in which you want to

find, not just a solution, but the best solution

• A “greedy algorithm” sometimes works well for

optimization problems.

• A greedy algorithm works in phases. At each phase:• A greedy algorithm works in phases. At each phase:

▫ You take the best you can get right now, without regard

for future consequences

▫ You hope that by choosing a local optimum at each

step, you will end up at a global optimum.

Greedy algorithms have five pillars

• A candidate set, from which a solution is created.

• A selection function, which chooses the best

candidate to be added to the solution.

• A feasibility function, that is used to determine if a

candidate can be used to contribute to a solution.candidate can be used to contribute to a solution.

• An objective function, which assigns a value to a

solution, or a partial solution, and

• A solution function, which will indicate when we

have discovered a complete solution.

Example: Making Changes

• Suppose you want to make changes of a certain
amount of money, using the fewest possible notes and
coins

• A greedy algorithm would do this would be:
At each step, take the largest possible notes or coin
that does not overshoot
▫ Example: To make 758, you can choose:▫ Example: To make 758, you can choose:
� a 500 rupees note
� two 100 rupees notes,
� a 50 rupees note,
� a 5 rupees coin,
� a 2 rupee coin
� a 1 rupee coin

• For money, the greedy algorithm always gives the
optimum solution

The Knapsack Problem

• The famous knapsack problem:

▫ A thief breaks into a museum. Fabulous paintings,

sculptures, and jewels are everywhere. The thief has a

good eye for the value of these objects, and knows that

each will fetch hundreds or thousands of dollars on the

clandestine art collector’s market. But, the thief has clandestine art collector’s market. But, the thief has

only brought a single knapsack to the scene of the

robbery, and can take away only what he can carry.

What items should the thief take to maximize the haul?

The Knapsack Problem

• More formally, the 0-1 knapsack problem:

▫ The thief must choose among n items, where the ith

item worth bi dollars and weighs wi pounds

▫ Carrying at most W pounds, maximize value

� Note: assume bi, wi, and W are all integersNote: assume bi, wi, and W are all integers

� each item must be taken or left in entirety.

• A variation, the fractional knapsack problem:

▫ Thief can take fractions of items

▫ Think of items in 0-1 problem as gold ingots, in

fractional problem as buckets of gold dust

Fractional Knapsack problem

• Given: A set S of n items, with each item i having
▫ bi - a positive benefit

▫ wi - a positive weight

• Goal: Choose items with maximum total benefit but with
weight at most W.

• If we are allowed to take fractional amounts, then this is the
fractional knapsack problem.fractional knapsack problem.
▫ In this case, we let xi denote the amount we take of item i

▫ Objective: maximize

▫ Constraint:

∑
∈Si

iii wxb)/(

∑
∈

≤

Si

i Wx

Fractional Knapsack: Example

• Given: A set S of n items, with each item i having
▫ bi - a positive benefit

▫ wi - a positive weight

• Goal: Choose items with maximum total benefit but with
weight at most W.

“knapsack”

9

Weight:

Benefit:

1 2 3 4 5

4 ml 8 ml 2 ml 6 ml 1 ml

$12 $32 $40 $30 $50

Items:

Value: 3
($ per ml)

4 20 5 50

10 ml

Solution:

• 1 ml of 5
• 2 ml of 3
• 6 ml of 4
• 1 ml of 2

“knapsack”

Fractional Knapsack problem

• Greedy choice: Keep taking
item with highest value
(benefit to weight ratio)
▫ Use a heap-based priority

queue to store the items, then
the time complexity is O(n log
n).

• Correctness: Suppose there

Algorithm fractionalKnapsack(S, W)

Input: set S of items w/ benefit bi

and weight wi; max. weight W
Output: amount xi of each item i

to maximize benefit with
weight at most W

for each item i in S• Correctness: Suppose there
is a better solution
▫ there is an item i with higher

value than a chosen item j (i.e.,
vj<vi) , if we replace some j
with i, we get a better solution

▫ Thus, there is no better
solution than the greedy one

for each item i in S

xi ← 0

vi ← bi / wi {value}

w ← 0 {current total weight}

while w < W

remove item i with highest vi

xi ← min{wi , W −−−− w}

w ← w + min{wi , W −−−− w}

The Knapsack Problem

• The optimal solution to the fractional knapsack
problem can be found with a greedy algorithm.

• The optimal solution to the 0-1 Knapsack problem
cannot be found with the same greedy strategy
▫ Greedy strategy: take in order of dollars/pound

▫ Example: 3 items weighing 10, 20, and 30 pounds, ▫ Example: 3 items weighing 10, 20, and 30 pounds,
knapsack can hold 50 pounds
� Suppose item 1 is worth $ 75, item 2 is worth $100 and

item 3 is worth $200.

� According to greedy algorithm, items 1 and 2 are selected
with total value = $175

� But best selection could be item 2 and 3 with total value =
$300.

Shortest paths on a special graph

• Problem: Find a shortest path from v0 to v3.

• The greedy method can solve this problem.

• The shortest path: 1 + 2 + 4 = 7.

Shortest paths on a multi-stage graph

• Problem: Find a shortest path from v0 to v3 in the multi-
stage graph.

• Greedy method: v0v1,2v2,1v3 = 23
• Optimal: v0v1,1v2,2v3 = 7
• The greedy method does not work.

Other Greedy Algorithms

• MST algorithms

▫ Kruskal’s and Prim’s Algorithms

• Single Source Shortest Path Algorithm.

▫ Dijkstra Algorithm

• Huffman Coding• Huffman Coding

Dynamic Programming

Manoj Kumar

DTU, Delhi

Dynamic Programming

• Dynamic Programming is an algorithm design
technique for optimization problems: often
minimizing or maximizing.

• Like divide and conquer, DP solves problems by
combining solutions to subproblems.

• Unlike divide and conquer, subproblems are not • Unlike divide and conquer, subproblems are not
independent.
▫ Subproblems may share subsubproblems,

▫ However, solution to one subproblem may not affect the
solutions to other subproblems of the same problem. (More
on this later.)

D.ynamic Programming..

• DP reduces computation by
▫ Solving subproblems in a bottom-up fashion.

▫ Storing solution to a subproblem the first time it is solved.

▫ Looking up the solution when subproblem is encountered
again.

• Key: determine structure of optimal solutions• Key: determine structure of optimal solutions

Steps in Dynamic Programming

1. Characterize structure of an optimal solution.

2. Define value of optimal solution recursively.

3. Compute optimal solution values either top-down

with caching or bottom-up in a table.

4. Construct an optimal solution from computed 4. Construct an optimal solution from computed

values.

We’ll study these with the help of examples.

0/1 Knapsack

• Problem statement:

▫ A thief robbing a store and can carry a maximal weight

of W into their knapsack. There are n items and ith item

weigh wi and is worth vi dollars. What items should

thief take?

• Exhibit No greedy choice property.

▫ No greedy algorithm exists.

• Exhibit optimal substructure property.

• Only dynamic programming algorithm exists.

0/1 Knapsack Problem: Formal description

(of items to take)

0/1 Knapsack Problem

0/1 Knapsack: Solution

• Let i be the highest-numbered item in an optimal

solution S for W pounds. Then S’ = S - {i} is an

optimal solution for W - wi pounds and the value to

the solution S is Vi plus the value of the subproblem.

• We can express this fact in the following formula: • We can express this fact in the following formula:

define c[i, w] to be the solution for items 1,2, . . . , i

and maximum weight w. Then

0 if i = 0 or w = 0

c[i,w] = c[i-1, w] if w<wi

max [vi + c[i-1, w-wi], c[i-1, w]} if i>0 and

w ≥ wi

0/1 Knapsack: Solution

• This says that the value of the solution to i items either

include ith item,

▫ in which case it is vi plus a subproblem solution for (i - 1)

items and the weight excluding wi, or

▫ does not include ith item, in which case it is a subproblem's

solution for (i - 1) items and the same weight. solution for (i - 1) items and the same weight.

• That is, if the thief picks item i, thief takes vi value, and

thief can choose from items W - wi, and get c[i - 1, W -

wi] additional value.

• On other hand, if thief decides not to take item i, thief can

choose from item 1,2, . . . , i- 1 upto the weight limit w,

and get c[i - 1, w] value. The better of these two choices

should be made.

0/1 Knapsack: Solution

• The algorithm takes as input the
▫ maximum weight W,

▫ the number of items n,

▫ and the two sequences v = <v1, v2, . . . , vn> and

w = <w1, w2, . . . , wn>.

• It stores the c[i, j] values in the table, that is, a two • It stores the c[i, j] values in the table, that is, a two
dimensional array, c[0 . . n, 0 . . w] whose entries are
computed in a row-major order.

• That is, the first row of c is filled in from left to right,
then the second row, and so on.

• At the end of the computation, c[n, w] contains the
maximum value that can be picked into the knapsack.

•

0/1 Knapsack: Algorithm
Dynamic-0-1-knapsack (v, w, n, W)
forw� 0 toW

do c[0, w] � 0
for i�1 to n

do c[i, 0] � 0
for w�1 toW
do if wi ≤w

then if vi + c[i-1, w-wi] > c[i-1, w]
then c[i, w] � v + c[i-1, w-w]

• The set of items to take can be deduced from the table, starting
at c[n. w] and tracing backwards where the optimal values
came from. If c[i, w] = c[i-1, w] item i is not part of the
solution, and we are continue tracing with c[i-1, w]. Otherwise
item i is part of the solution, and we continue tracing with c[i-
1, w-W].

then c[i, w] � vi + c[i-1, w-wi]
else c[i, w] � c[i-1, w]

else c[i, w] = c[i-1, w]

Analysis

• This dynamic-0-1-kanpsack algorithm takes θ(nw)

times, broken up as follows: θ(nw) times to fill the c-

table, which has (n +1).(w +1) entries, each requiring

θ(1) time to compute. O(n) time to trace the solution,

because the tracing process starts in row n of the table because the tracing process starts in row n of the table

and moves up 1 row at each step.

c[i,w]

c[i,w]

• The algorithm computing c[i,w] does not keep record

of which subset of items gives the optimal solution.

• To compute the actual subset, we can add an auxiliary

boolean array keep[i,w] which is 1 if we decide to

take the ith item in c[i, w] and 0 otherwise.take the i item in c[i, w] and 0 otherwise.

Dynamic-0-1-knapsack (v, w, n, W)
forw� 0 toW

do c[0, w] � 0
for i�1 to n

do c[i, 0] � 0
for w�1 toW
do if wi ≤w

then if vi + c[i-1, w-wi] > c[i-1, w]then if vi + c[i-1, w-wi] > c[i-1, w]
then c[i, w] � vi + c[i-1, w-wi]

keep[i,w] � 1
else c[i, w] � c[i-1, w]

keep[i,w]� 0
else c[i, w] = c[i-1, w]

keep[i,w] � 0

Constructing the Optimal Solution

Question:

• How do we use values in keep[i, w] to determine the

subset T of items having the maximum value?

• If keep[n,W] is 1, then n∈T, We can repeat this

argument for keep[n-1,W-wn].argument for keep[n-1,W-wn].

• If keep[n,W] is 0, then n∉T, We can repeat this

argument for keep[n-1,W].

• Therefore te following part of the program will

output the elements of T.

K�W
for i� n downto 1

do if (keep[i,K] ==1)do if (keep[i,K] ==1)
then print i

K� K-wi

Complete Algorithm
Dynamic-0-1-knapsack (v, w, n, W)
forw� 0 toW

do c[0, w] � 0
for i�1 to n

do c[i, 0] � 0
for w�1 toW
do if wi ≤w

then if vi + c[i-1, w-wi] > c[i-1, w]
then c[i, w] � v + c[i-1, w-w]then c[i, w] � vi + c[i-1, w-wi]

keep[i,w] � 1
else c[i, w] � c[i-1, w]

keep[i,w]� 0
else c[i, w] = c[i-1, w]

keep[i,w] � 0

K�W
for i� n downto 1

do if (keep[i,K] ==1)
then print i

K� K-wi

Example

c[i,w]

keep[i,w]

i= 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 1 1 1 1

2 0 0 0 0 1 1 1 1 1 1 1

3 0 0 0 0 0 0 0 0 0 0 1

4 0 0 0 1 1 1 1 1 1 1 1

Solution
T={2,4}

