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Greedy algorithms

• A greedy algorithm is an algorithm that follows

the problem solving heuristic of making the locally

optimal choice at each stage with the hope of finding

a global optimum.



Optimization problems

• An optimization problem is one in which you want to 

find, not just a solution, but the best solution

• A “greedy algorithm” sometimes works well for 

optimization problems.

• A greedy algorithm works in phases. At each phase:• A greedy algorithm works in phases. At each phase:

▫ You take the best you can get right now, without regard 

for future consequences

▫ You hope that by choosing a local optimum at each 

step, you will end up at a global optimum.



Greedy algorithms have five pillars

• A candidate set, from which a solution is created.

• A selection function, which chooses the best 

candidate to be added to the solution.

• A feasibility function, that is used to determine if a 

candidate can be used to contribute to a solution.candidate can be used to contribute to a solution.

• An objective function, which assigns a value to a 

solution, or a partial solution, and

• A solution function, which will indicate when we 

have discovered a complete solution.



Example: Making Changes

• Suppose you want to make changes of a certain 
amount of money, using the fewest possible notes and 
coins

• A greedy algorithm would do this would be:
At each step, take the largest possible notes or coin 
that does not overshoot
▫ Example: To make 758, you can choose:▫ Example: To make 758, you can choose:
� a 500 rupees note
� two 100 rupees notes, 
� a 50 rupees note,
� a 5 rupees coin,
� a 2 rupee coin
� a 1 rupee coin

• For money, the greedy algorithm always gives the 
optimum solution



The Knapsack Problem

• The famous knapsack problem:

▫ A thief breaks into a museum.  Fabulous paintings, 

sculptures, and jewels are everywhere.  The thief has a 

good eye for the value of these objects, and knows that 

each will fetch hundreds or thousands of dollars on the 

clandestine art collector’s market.  But, the thief has clandestine art collector’s market.  But, the thief has 

only brought a single knapsack to the scene of the 

robbery, and can take away only what he can carry.  

What items should the thief take to maximize the haul?



The Knapsack Problem

• More formally, the 0-1 knapsack problem:

▫ The thief must choose among n items, where the ith

item worth bi dollars and weighs wi pounds

▫ Carrying at most W pounds, maximize value

� Note: assume bi, wi, and W are all integersNote: assume bi, wi, and W are all integers

� each item must be taken or left in entirety.

• A variation, the fractional knapsack problem:

▫ Thief can take fractions of items

▫ Think of items in 0-1 problem as gold ingots, in 

fractional problem as buckets of gold dust



Fractional Knapsack problem

• Given: A set S of n items, with each item i having
▫ bi - a positive benefit

▫ wi - a positive weight

• Goal: Choose items with maximum total benefit but with 
weight at most W.

• If we are allowed to take fractional amounts, then this is the 
fractional knapsack problem.fractional knapsack problem.
▫ In this case, we let xi denote the amount we take of item i

▫ Objective: maximize

▫ Constraint:
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Fractional Knapsack: Example

• Given: A set S of n items, with each item i having
▫ bi - a positive benefit

▫ wi - a positive weight

• Goal: Choose items with maximum total benefit but with 
weight at most W.

“knapsack”

9

Weight:

Benefit:

1 2 3 4 5

4 ml 8 ml 2 ml 6 ml 1 ml

$12 $32 $40 $30 $50

Items:

Value: 3
($ per ml)

4 20 5 50

10 ml

Solution:

• 1 ml of 5
• 2 ml of 3
• 6 ml of 4
• 1 ml of 2

“knapsack”



Fractional Knapsack problem

• Greedy choice: Keep taking 
item with highest value
(benefit to weight ratio)
▫ Use a heap-based priority 

queue to store the items, then
the time complexity is O(n log 
n).

• Correctness: Suppose there 

Algorithm fractionalKnapsack(S, W)

Input: set S of items w/ benefit bi

and weight wi; max. weight W
Output: amount xi of each item i

to maximize benefit with 
weight at most W

for each item i in S• Correctness: Suppose there 
is a better solution
▫ there is an item i with higher 

value than a chosen item j (i.e., 
vj<vi) , if we replace some j
with i, we get a better solution

▫ Thus, there is no better 
solution than the greedy one

for each item i in S

xi ← 0

vi ← bi  / wi {value}

w ← 0 {current total weight}

while w < W 

remove item i with highest vi

xi ← min{wi , W −−−− w}

w ← w + min{wi , W −−−− w}



The Knapsack Problem

• The optimal solution to the fractional knapsack 
problem can be found with a greedy algorithm.

• The optimal solution to the 0-1 Knapsack problem 
cannot be found with the same greedy strategy
▫ Greedy strategy: take in order of dollars/pound

▫ Example: 3 items weighing 10, 20, and 30 pounds, ▫ Example: 3 items weighing 10, 20, and 30 pounds, 
knapsack can hold 50 pounds
� Suppose item 1 is worth $ 75, item 2 is worth $100 and 

item 3 is worth $200.

� According to greedy algorithm, items 1 and 2 are selected 
with total value = $175

� But best selection could be item 2 and 3 with total value = 
$300. 



Shortest paths on a special graph

• Problem: Find a shortest path from v0 to v3.

• The greedy method can solve this problem.

• The shortest path: 1 + 2 + 4 = 7.



Shortest paths on a multi-stage graph

• Problem:  Find a shortest path from v0 to v3 in the multi-
stage graph.

• Greedy method: v0v1,2v2,1v3 = 23
• Optimal: v0v1,1v2,2v3 = 7
• The greedy method does not work.



Other Greedy Algorithms

• MST algorithms

▫ Kruskal’s and Prim’s Algorithms

• Single Source Shortest Path Algorithm.

▫ Dijkstra Algorithm

• Huffman Coding• Huffman Coding
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Dynamic Programming

• Dynamic Programming is an algorithm design 
technique for optimization problems: often 
minimizing or maximizing.

• Like divide and conquer, DP solves problems by 
combining solutions to subproblems.

• Unlike divide and conquer, subproblems are not • Unlike divide and conquer, subproblems are not 
independent.
▫ Subproblems may share subsubproblems,

▫ However, solution to one subproblem may not affect the 
solutions to other subproblems of the same problem. (More 
on this later.)



D.ynamic Programming..

• DP reduces computation by 
▫ Solving subproblems in a bottom-up fashion.

▫ Storing solution to a subproblem the first time it is solved.

▫ Looking up the solution when subproblem is encountered 
again.

• Key: determine structure of optimal solutions• Key: determine structure of optimal solutions



Steps in Dynamic Programming

1. Characterize structure of an optimal solution.

2. Define value of optimal solution recursively.

3. Compute optimal solution values either top-down 

with caching or bottom-up in a table.

4. Construct an optimal solution from computed 4. Construct an optimal solution from computed 

values.

We’ll study these with the help of examples.



0/1 Knapsack

• Problem statement:

▫ A thief robbing a store and can carry a maximal weight 

of W into their knapsack. There are n items and ith item 

weigh wi and is worth vi dollars. What items should 

thief take?

• Exhibit No greedy choice property. 

▫ No greedy algorithm exists. 

• Exhibit optimal substructure property. 

• Only dynamic programming algorithm exists. 



0/1 Knapsack Problem: Formal description

(of items to take)



0/1 Knapsack Problem



0/1 Knapsack: Solution

• Let i be the highest-numbered item in an optimal 

solution S for W pounds. Then S’ = S - {i} is an 

optimal solution for W - wi pounds and the value to 

the solution S is Vi plus the value of the subproblem.

• We can express this fact in the following formula: • We can express this fact in the following formula: 

define c[i, w] to be the solution for items 1,2, . . . , i

and maximum weight w. Then

0 if i = 0 or w = 0 

c[i,w] = c[i-1, w ] if w<wi

max [vi + c[i-1, w-wi], c[i-1, w]} if i>0 and 

w ≥ wi



0/1 Knapsack: Solution

• This says that the value of the solution to i items either 

include ith item, 

▫ in which case it is vi plus a subproblem solution for (i - 1) 

items and the weight excluding wi, or 

▫ does not include ith item, in which case it is a subproblem's

solution for (i - 1) items and the same weight. solution for (i - 1) items and the same weight. 

• That is, if the thief picks item i, thief takes vi value, and 

thief can choose from items W - wi, and get c[i - 1, W -

wi] additional value. 

• On other hand, if thief decides not to take item i, thief can 

choose from item 1,2, . . . , i- 1 upto the weight limit w, 

and get c[i - 1, w] value. The better of these two choices 

should be made.



0/1 Knapsack: Solution

• The algorithm takes as input the 
▫ maximum weight W, 

▫ the number of items n, 

▫ and the two sequences v = <v1, v2, . . . , vn> and 

w = <w1, w2, . . . , wn>. 

• It stores the c[i, j] values in the table, that is, a two • It stores the c[i, j] values in the table, that is, a two 
dimensional array, c[0 . . n, 0 . . w] whose entries are 
computed in a row-major order. 

• That is, the first row of c is filled in from left to right, 
then the second row, and so on. 

• At the end of the computation, c[n, w] contains the 
maximum value that can be picked into the knapsack.

•



0/1 Knapsack: Algorithm
Dynamic-0-1-knapsack (v, w, n, W)
forw� 0 toW

do c[0, w] � 0
for i�1 to n

do c[i, 0] � 0
for w�1 toW
do if wi ≤w

then if vi + c[i-1, w-wi] > c[i-1, w]
then c[i, w] � v + c[i-1, w-w ]

• The set of items to take can be deduced from the table, starting 
at c[n. w] and tracing backwards where the optimal values 
came from. If c[i, w] = c[i-1, w] item i is not part of the 
solution, and we are continue tracing with c[i-1, w]. Otherwise 
item i is part of the solution, and we continue tracing with c[i-
1, w-W].

then c[i, w] � vi + c[i-1, w-wi]
else c[i, w] � c[i-1, w]

else  c[i, w] = c[i-1, w]



Analysis

• This dynamic-0-1-kanpsack algorithm takes θ(nw) 

times, broken up as follows: θ(nw) times to fill the c-

table, which has (n +1).(w +1) entries, each requiring 

θ(1) time to compute. O(n) time to trace the solution, 

because the tracing process starts in row n of the table because the tracing process starts in row n of the table 

and moves up 1 row at each step.



c[i,w]



c[i,w]



• The algorithm computing c[i,w] does not keep record  

of which subset of items gives the optimal solution.

• To compute the actual subset, we can add an auxiliary 

boolean array keep[i,w] which is 1 if we decide to 

take the ith item in c[i, w] and 0 otherwise.take the i item in c[i, w] and 0 otherwise.



Dynamic-0-1-knapsack (v, w, n, W)
forw� 0 toW

do c[0, w] � 0
for i�1 to n

do c[i, 0] � 0
for w�1 toW
do if wi ≤w

then if vi + c[i-1, w-wi] > c[i-1, w]then if vi + c[i-1, w-wi] > c[i-1, w]
then c[i, w] � vi + c[i-1, w-wi]

keep[i,w] � 1
else c[i, w] � c[i-1, w]

keep[i,w]� 0
else  c[i, w] = c[i-1, w]

keep[i,w] � 0



Constructing the Optimal Solution

Question:

• How do we use values in keep[i, w] to determine the 

subset T of items having the maximum value?

• If keep[n,W] is 1, then n∈T, We can repeat this 

argument for keep[n-1,W-wn].argument for keep[n-1,W-wn].

• If keep[n,W] is 0, then n∉T, We can repeat this 

argument for keep[n-1,W].



• Therefore te following part of the program will 

output the elements of T.

K�W
for i� n downto 1

do if (keep[i,K] ==1)do if (keep[i,K] ==1)
then   print i

K� K-wi



Complete Algorithm
Dynamic-0-1-knapsack (v, w, n, W)
forw� 0 toW

do c[0, w] � 0
for i�1 to n

do c[i, 0] � 0
for w�1 toW
do if wi ≤w

then if vi + c[i-1, w-wi] > c[i-1, w]
then c[i, w] � v + c[i-1, w-w ]then c[i, w] � vi + c[i-1, w-wi]

keep[i,w] � 1
else c[i, w] � c[i-1, w]

keep[i,w]� 0
else  c[i, w] = c[i-1, w]

keep[i,w] � 0

K�W
for i� n downto 1

do if (keep[i,K] ==1)
then   print i

K� K-wi



Example

c[i,w]

keep[i,w]

i=  0 0       0     0        0        0         0        0        0        0        0         0

1 0       0     0        0 0         1         1         1        1         1         1

2 0       0     0        0         1         1         1         1 1         1         1

3   0       0     0        0        0          0        0        0 0         0        1

4 0       0     0         1        1           1         1         1        1          1        1 

Solution
T={2,4}


