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Red Black Tree

• Recall binary search tree

▫ Key values in the left subtree <= the node value

▫ Key values in the right subtree >= the node value

• Operations: 

▫ insertion, deletion▫ insertion, deletion

▫ Search, maximum, minimum, successor, predecessor.

▫ O(h), h is the height of the tree.



Red Black Tree

• Definition: a binary tree, satisfying:
1. Every node is red or black

2. The root is black

3. Every leaf is NIL and is black

4. If a node is red, then both its children are black

5. For each node, all paths from the node to descendant 5. For each node, all paths from the node to descendant 
leaves contain the same number of black nodes.

• Purpose: keep the tree balanced.

• Other balanced search tree:
▫ AVL tree, 2-3-4 tree, Splay tree.



Red Black Tree



All NIL nodes replaced by single sentinel node nil[T]



Same red Black tree without NIL nodes



Node structure
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Properties

• Black height:-bh(x), black-height of x, the number of
black nodes on any path from x (excluding x) to a
leaf.

• A red-black tree with n internal nodes has height at 
most 2log(n+1).
▫ Note: Internal nodes: all normal key-bearing nodes. ▫ Note: Internal nodes: all normal key-bearing nodes. 

External nodes: Nil nodes or the Nil Sentinel.

▫ A subtree rooted at x contains at least 2bh(x)-1 internal nodes. 

▫ By property 4, bh(root)≥h/2.

▫ n ≥ 2h/2-1 



Some operations in log(n)

• Search, minimum, maximum, successor, predecessor.

• Let us discuss insert or delete.



Rotations
.

Algorithms to restore RBT property to tree after Tree-Insert 

and Tree-Delete include right and left rotations and re-

coloring nodes.

The number of rotations for insert and delete are constant, 

but they may take place at every level of the tree, so therefore 

the running time of insert and delete is O(lg(n))the running time of insert and delete is O(lg(n))



Rotations

• Rotations are the basic tree-restructuring operation for 
almost all balanced search trees.

• Rotation takes a red-black-tree and a node, 

• Changes pointers to change the local structure, and

• Won’t violate the binary-search-tree property.

• Left rotation and right rotation are inverses.
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• Left rotation and right rotation are inverses.



Left Rotation

LEFT-ROTATE(T, x)
1. y � right[x] //set y
2. right[x] ←left[y] //turn y’s left subtree into x’s right subtree
3. if (left[y]!=nil) 
4. then p[left[y]]� x // change parent of β if β is not NIL
5. p[y] � p[x] //link x’s parent to y.
6. if  (p[x]==nil) // if x was root, make y root node
7. then root[T] � y
8. else if (x ==left[p[x]]) // link y to parent of x8. else if (x ==left[p[x]]) // link y to parent of x
9. then left[p[x]]� y 
10. else right[p[x]]� y

11. left[y] � x // put x on y’s left
12. p[x] � y
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Rotations

• The pseudo-code for Left-Rotate assumes that 

▫ right[x] ≠ nil[T ], and

▫ root’s parent is nil[T ].

• Left Rotation on x, makes x the left child of y, and the 

left subtree of y into the right subtree of x.

• Pseudocode for Right-Rotate is symmetric: exchange 

left and right everywhere.

• Time: O(1) for both Left-Rotate and Right-Rotate, 

since a constant number of pointers are modified.



Right Rotation
RIGHT-ROTATE(T, x)
1. y � left[x] //set y
2. left[x] ← right[y] //turn y’s right subtree into x’s left subtree
3. if (right[y]!=nil) 
4. then p[right[y]]� x // change parent of β if β is not NIL
5. p[y] � p[x] //link y to parent of x.
6. if  (p[y]==nil) // if x was root, make y root node
7. then root[T] � x
8. else if (x ==left[p[x]]) // link x to parent of y
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RIGHT-ROTATE(T, y)

8. else if (x ==left[p[x]]) // link x to parent of y
9. then left[p[x]]� y
10. else right[p[x]]� y

11. right[y] � x // put x on y’s right
12. p[x] � y



Left Rotation: Example



Reminder: Red-black Properties

1. Every node is either red or black.

2. The root is black.

3. Every leaf (nil) is black.

4. If a node is red, then both its children are black.

5. For each node, all paths from the node to 5. For each node, all paths from the node to 

descendant leaves contain the same number of 

black nodes.



Insertion

• Insertion must preserve all red-black properties.

• Should an inserted node be colored Red? Black?

• Basic steps:

▫ Use TREE-INSERT(T, x) from BST (slightly modified) 

to insert a node x into T.to insert a node x into T.

▫ Color the node x red.

▫ Fix the modified tree by re-coloring nodes and 

performing rotation to preserve RB tree property.

� Procedure RB-INSERT-FIXUP(T, x).



RB-INSERT()

RB-INSERT(T, x)
1. TREE-INSERT(T, x)
2. RB-INSERT-FIXUP(T, x)



TREE-INSERT()
TREE-INSERT(T, x)
1. y � NIL
2. z � root[T]
3. while (z !=nil[T])
4. do y � z //set y to a node where x may be inserted
5. if (key[x] < key[z])
6. then z � left[z]
7. else z � right[z]
8. p[x] � y // insert x as child of y8. p[x] � y // insert x as child of y
9. if (y==NIL)
10. then root[T] � x
11. else  if (key[x] < key[y])
12. then left[y] �x
13. else right[y] � x
14. left[x] � nil[T]
15. right[x] � nil[T]
16. color[x] � RED

x

y



RB-INSERT-FIXUP()

• Problem: we may have one pair of consecutive reds 

where we did the insertion.

• Solution: rotate it up the tree and away…

Three cases have to be handled…



Case 1: uncle y is red

new xp[p[x]]

• p[p[x]] (x’s grandparent) must be black, since x and p[x] are both red and there are no 
other violations of property 4.

• Make p[x] and y black ⇒ now x and p[x] are not both red. But property 5 might now 

be violated.

• Make p[p[x]] red ⇒ restores property 5.

• The next iteration has p[p[x]] as the new x (i.e., x moves up 2 levels).
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x is a right child here.
Similar steps if x is a left child.
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RB-INSERT-FIXUP(): Case 1

RB-Insert-Fixup (T, x)

1. while (x != root[T] and color[p[x]] == RED )

2. do if  (p[x] == left[p[p[x]]])

3. then y ← right[p[p[x]]]

4. if (color[y] == RED)

←5. then color[p[x]] ← BLACK // Case 1

6. color[y] ← BLACK // Case 1

7. color[p[p[x]]] ← RED // Case 1

8. x ← p[p[x]] // Case 1



RB-INSERT-FIXUP(): Case 2 & 3

RB-INSERT-FIXUP(T, x) (Contd.)

9. else if x == right[p[x]] // color[y] ≠ RED

10. then x ← p[x]                           // Case 2

11. LEFT-ROTATE(T, x) // Case 2

12. color[p[x]] ← BLACK  // Case 3

←13. color[p[p[x]]] ← RED // Case 3

14. RIGHT-ROTATE(T, p[p[x]]) // Case 3

15. else if p[x] == right[p[p[x]]])  

then (same as 3-14 with “right” and “left” exchanged)

16. color[root[T ]] ← BLACK



Case 2 – y is black, x is a right child

C C

• Left rotate around p[x], p[x] and x switch roles ⇒ now x is a 

left child, and both x and p[x] are red.

• Takes us immediately to case 3.
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Case 3 – y is black, x is a left child

• Make p[x] black and p[p[x]] red.

• Then right rotate on p[p[x]]. Ensures property 4 is maintained.

• No longer have 2 reds in a row.

• p[x] is now black ⇒ no more iterations.
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Algorithm Analysis

• O(lg n) time to get through RB-INSERT up to the 

call of RB-INSERT-FIXUP.

• Within RB-INSERT-FIXUP:

▫ Each iteration takes O(1) time.

▫ Each iteration but the last moves x up 2 levels.▫ Each iteration but the last moves x up 2 levels.

▫ O(lg n) levels ⇒ O(lg n) time.

▫ Thus, insertion in a red-black tree takes O(lg n) time.

▫ Note: there are at most 2 rotations overall.



Deletion

• Deletion, like insertion, should preserve all the RB 

properties.

• The properties that may be violated depends on the 

color of the deleted node.

▫ Red – OK. Why?▫ Red – OK. Why?

▫ Black?

• Steps:

▫ Do regular BST deletion.

▫ Fix any violations of RB properties that may result.



Deletion
If z contains single child

If z contains both children

x points to child of y

Connect x to parent of y

make x left or right child 

of parent of y

Replace z with y

If a BLACK node is 

deleted, call Fixup on x



RB Properties Violation

• If y is black, we could have violations of red-black 

properties:

▫ Prop. 1. OK.

▫ Prop. 2. If y is the root and x is red, then the root has 

become red.become red.

▫ Prop. 3. OK.

▫ Prop. 4. Violation if p[y] and x are both red.

▫ Prop. 5. Any path containing y now has 1 fewer black 

node.



RB Properties Violation

• Prop. 5. Any path containing y now has 1 fewer black 
node.
▫ Correct by giving x an “extra black.”

▫ Add 1 to count of black nodes on paths containing x.

▫ Now property 5 is OK, but property 1 is not.

▫ x is either doubly black (if color[x] = BLACK) or red & ▫ x is either doubly black (if color[x] = BLACK) or red & 
black (if color[x] = RED).

▫ The attribute color[x] is still either RED or BLACK. No 
new values for color attribute.

▫ In other words, the extra blackness on a node is by virtue of 
x pointing to the node.

• Remove the violations by calling RB-Delete-Fixup.



Delete fixup



Deletion – Fixup

• Idea: Move the extra black up the tree until x points 

to a red & black node ⇒ turn it into a black node,

• x points to the root ⇒ just remove the extra black, or 

• We can do certain rotations and recoloring and finish.

• Within the while loop:• Within the while loop:

▫ x always points to a non root doubly black node.

▫ w is x’s sibling.

▫ w cannot be nil[T ], since that would violate property 5 at 

p[x].

• 8 cases in all, 4 of which are symmetric to the other.



Case 1 – w is red
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• w must have black children.
• Make w black and p[x] red (because w is red p[x] couldn’t have 

been red).
• Then left rotate on p[x].
• New sibling of x was a child of w before rotation ⇒ must be 

black.
• Go immediately to case 2, 3, or 4.



Case 2 – w is black, both w’s children are black
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• Take 1 black off x (⇒ singly black) and off w (⇒ red).

• Move that black to p[x].

• Do the next iteration with p[x] as the new x.

• If entered this case from case 1, then p[x] was red ⇒ new x is 

red & black ⇒ color attribute of new x is RED ⇒ loop 

terminates. Then new x is made black in the last line.



Case 3 – w is black, w’s left child is red, w’s

right child is black
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• Make w red and w’s left child black.

• Then right rotate on w.

• New sibling w of x is black with a red right child ⇒ case 4.



Case 4 – w is black, w’s right child is red
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• Make w be p[x]’s color (c).

• Make p[x] black and w’s right child black.

• Then left rotate on p[x].

• Remove the extra black on x (⇒ x is now singly black) without 

violating any red-black properties.

• All done. Setting x to root causes the loop to terminate.



Analysis

• O(lg n) time to get through RB-DELETE up to the 
call of RB-DELETE-FIXUP.

• Within RB-DELETE-FIXUP:
▫ Case 2 is the only case in which more iterations occur.
� x moves up 1 level.

� Hence, O(lg n) iterations.� Hence, O(lg n) iterations.

▫ Each of cases 1, 3, and 4 has 1 rotation ⇒ ≤ 3 rotations 
in all.

▫ Hence, O(lg n) time.



Augmenting Data Structures



Augmenting Data Structures

• The idea of augmenting data structures is fairly 

simple. We want to add data to the elements of our 

data structure that help us to quickly get to some type 

of information.

• Technically you can augment a data structure with • Technically you can augment a data structure with 

whatever information you want, but certain things 

don't allow for the data structure to be efficiently 

implemented. In order to be practical, the augmented 

data must be updatable with the same order as the 

normal operations of the data structure.



Augmenting BSTs

• For BSTs, we can come up with a simple rule for 

what types of data we can augment the structure with.

• Any augmentation where the value of a node can be 

calculated from the values of the children will 

preserve the speed requirements.preserve the speed requirements.

• This holds because only O(log n) nodes are going to 

have one of their descendants changed.

• Most of the values that we typically talk about in 

relation to trees can be calculated this way which 

means we can augment the tree with them.



Dynamic order statistic (ith element)

• Red-black tree gives a total order via inorder traversal,  i.e., 
reflecting the rank of an element.
▫ Two additional operations:
� Find ith smallest element.
� Find the rank of an element.

• How to modify it? 

• Add a field, size in every node, i.e., size[x] is the size of the • Add a field, size in every node, i.e., size[x] is the size of the 

subtree rooted at x, including x. 

• So assume sentinel’s size size[NIL]=0, then, 

size[x]=size[left[x]]+size[right[x]]+1.

• If so, easy to find the ith element, or the rank of an element in 

log(n) time.  



Dynamic order statistic tree



Retrieving element with rank i

OS-SELECT(x,i)
1. r � size[left[x]] +1
2. if   i == r
3. then  return x
4. else if  (i <r)

Find ith smallest element in the tree rooted at x in O(lg n) time

4. else if  (i <r)
5. then return OS-SELECT(left[x],i)
6. else  return OS-SELECT(right[x] , i-r)

•Here r is number of keys less than key of x, so rank of x is r+1.



Find rank of an element

Give a pointer to node x in an order-statistic tree T, 

algorithm returns position of x in linear order 

determined by an inorder traversal of T.

OS-RANK(T,x)OS-RANK(T,x)
1. r � size[left[x]] +1
2. y � x
3. while y != root[T]
4. do  if y == right[p[y]])
5. then r � r + size[left[p[y]]]+1
6. y � p[y]
7. return r



Maintaining subtree sizes

• Insertion: two passes:

▫ Insert x into tree, by going down, increase size by 1 for 

each node visited.

▫ Modify the color and rotation by going up.

� Only the rotation will affect the size of some nodes,Only the rotation will affect the size of some nodes,

� Fortunately, local modification.

• Same for deletion operation.



Maintaining subtree sizes

Two lines of addition code required in LEFT-ROTATE()
size[y] � size[x]
size[x] � size[left[x]] + size[right[x] + 1

Two lines of addition code required in RIGHT-ROTATE()
size[x] � size[y]
size[y] � size[left[y]] + size[right[y]] +1



Interval tree: dynamic set of intervals

Intervals

• Closed intervals [t1,t2], with t1 ≤ t2,

• open intervals, 

• half-intervals ≤ t1,    ≥ t1

• New operations:• New operations:

▫ INTERVAL-INSERT(T, x), x=[t1,t2].

▫ INTERVAL-DELETE(T, x), x=[t1,t2].

▫ INTERVAL-SEARCH(T, i), return a pointer x such that 

the interval of x overlaps with i.



How to implement?

• Select a underlying DS, red-back tree
▫ The node x contains interval int[x], and the low[int[x]] 

is the node’s key.

• Additional information: max

• Maintain the information:
▫ max[x]=max(high[int[x]],max[left[x]],max[right[x]]). ▫ max[x]=max(high[int[x]],max[left[x]],max[right[x]]). 

• Implementation of INTERVAL-SEARCH.



Interval trichotomy





If go to right, then safe since there is no interval in the left overlapping with i.
If go to left, either there is an interval in the left overlapping with i or there is
no overlaps. In the latter, we can prove that there will also be no overlaps
in the right.  



Interval Trees

• Support following operations.

4           5           6          7          8          9          10       11  …    15        16        17         18      19 …   21        22       23

(7, 10)

(5, 11)

(4, 8)

(15, 18)

(17, 19)

(21, 23)

• Support following operations.

• Interval-Insert(i, S): Insert interval i = (li, ri ) into tree S.

• Interval-Delete(i, S): Delete interval i = (li, ri ) from tree S.

• Interval-Find(i, S): Return an interval x that overlaps i, 

or report that no such interval exists.



Interval Trees

4           5           6          7          8          9          10       11  …    15        16        17         18      19 …   21        22       23

(7, 10)

(5, 11)

(4, 8)

(15, 18)

(17, 19)

(21, 23)

• Key ideas:
(17, 19)

• Key ideas:

▫ Tree nodes contain interval.

▫ BST keyed on left endpoint.

(4, 8)

(17, 19)

Key Interval

(5, 11) (21, 23)

(15, 18)

(7, 10)



Interval Trees

4           5           6          7          8          9          10       11  …    15        16        17         18      19 …   21        22       23

(7, 10)

(5, 11)

(4, 8)

(15, 18)

(17, 19)

(21, 23)

• Key ideas:
(17, 19) 23

• Key ideas:

▫ Tree nodes contain interval.

▫ BST keyed on left endpoint.

▫ Additional info:  store max

endpoint in subtree rooted

at node.

(4, 8)

(17, 19)

max in 
subtree

(5, 11) 18 (21, 23) 23

8 (15, 18) 18

(7, 10) 10

23



Finding an Overlapping Interval

• Interval-Find(i, S):  return an interval x that overlaps i

= (li, ri ), or report that no such interval exists.

(17, 19) 23
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(7, 10) 10


