
Red-Black Tree

Manoj Kumar

DTU, Delhi

Red Black Tree

• Recall binary search tree

▫ Key values in the left subtree <= the node value

▫ Key values in the right subtree >= the node value

• Operations:

▫ insertion, deletion▫ insertion, deletion

▫ Search, maximum, minimum, successor, predecessor.

▫ O(h), h is the height of the tree.

Red Black Tree

• Definition: a binary tree, satisfying:
1. Every node is red or black

2. The root is black

3. Every leaf is NIL and is black

4. If a node is red, then both its children are black

5. For each node, all paths from the node to descendant 5. For each node, all paths from the node to descendant
leaves contain the same number of black nodes.

• Purpose: keep the tree balanced.

• Other balanced search tree:
▫ AVL tree, 2-3-4 tree, Splay tree.

Red Black Tree

All NIL nodes replaced by single sentinel node nil[T]

Same red Black tree without NIL nodes

Node structure

left key color rightparent

parent

left

key

color

right

parent

Properties

• Black height:-bh(x), black-height of x, the number of
black nodes on any path from x (excluding x) to a
leaf.

• A red-black tree with n internal nodes has height at
most 2log(n+1).
▫ Note: Internal nodes: all normal key-bearing nodes. ▫ Note: Internal nodes: all normal key-bearing nodes.

External nodes: Nil nodes or the Nil Sentinel.

▫ A subtree rooted at x contains at least 2bh(x)-1 internal nodes.

▫ By property 4, bh(root)≥h/2.

▫ n ≥ 2h/2-1

Some operations in log(n)

• Search, minimum, maximum, successor, predecessor.

• Let us discuss insert or delete.

Rotations
.

Algorithms to restore RBT property to tree after Tree-Insert

and Tree-Delete include right and left rotations and re-

coloring nodes.

The number of rotations for insert and delete are constant,

but they may take place at every level of the tree, so therefore

the running time of insert and delete is O(lg(n))the running time of insert and delete is O(lg(n))

Rotations

• Rotations are the basic tree-restructuring operation for
almost all balanced search trees.

• Rotation takes a red-black-tree and a node,

• Changes pointers to change the local structure, and

• Won’t violate the binary-search-tree property.

• Left rotation and right rotation are inverses.

y

x

αααα ββββ

γγγγ

Left-Rotate(T, x)

γγγγ

αααα

x

y

ββββ

Right-Rotate(T, y)

• Left rotation and right rotation are inverses.

Left Rotation

LEFT-ROTATE(T, x)
1. y � right[x] //set y
2. right[x] ←left[y] //turn y’s left subtree into x’s right subtree
3. if (left[y]!=nil)
4. then p[left[y]]� x // change parent of β if β is not NIL
5. p[y] � p[x] //link x’s parent to y.
6. if (p[x]==nil) // if x was root, make y root node
7. then root[T] � y
8. else if (x ==left[p[x]]) // link y to parent of x8. else if (x ==left[p[x]]) // link y to parent of x
9. then left[p[x]]� y
10. else right[p[x]]� y

11. left[y] � x // put x on y’s left
12. p[x] � y

y

x

αααα ββββ

γγγγ
LEFT-ROTATE(T, x)

γγγγ
αααα

x

y

ββββ

Rotations

• The pseudo-code for Left-Rotate assumes that

▫ right[x] ≠ nil[T], and

▫ root’s parent is nil[T].

• Left Rotation on x, makes x the left child of y, and the

left subtree of y into the right subtree of x.

• Pseudocode for Right-Rotate is symmetric: exchange

left and right everywhere.

• Time: O(1) for both Left-Rotate and Right-Rotate,

since a constant number of pointers are modified.

Right Rotation
RIGHT-ROTATE(T, x)
1. y � left[x] //set y
2. left[x] ← right[y] //turn y’s right subtree into x’s left subtree
3. if (right[y]!=nil)
4. then p[right[y]]� x // change parent of β if β is not NIL
5. p[y] � p[x] //link y to parent of x.
6. if (p[y]==nil) // if x was root, make y root node
7. then root[T] � x
8. else if (x ==left[p[x]]) // link x to parent of y

x

y

αααα ββββ

γγγγ

γγγγ

αααα

y

x

ββββ

RIGHT-ROTATE(T, y)

8. else if (x ==left[p[x]]) // link x to parent of y
9. then left[p[x]]� y
10. else right[p[x]]� y

11. right[y] � x // put x on y’s right
12. p[x] � y

Left Rotation: Example

Reminder: Red-black Properties

1. Every node is either red or black.

2. The root is black.

3. Every leaf (nil) is black.

4. If a node is red, then both its children are black.

5. For each node, all paths from the node to 5. For each node, all paths from the node to

descendant leaves contain the same number of

black nodes.

Insertion

• Insertion must preserve all red-black properties.

• Should an inserted node be colored Red? Black?

• Basic steps:

▫ Use TREE-INSERT(T, x) from BST (slightly modified)

to insert a node x into T.to insert a node x into T.

▫ Color the node x red.

▫ Fix the modified tree by re-coloring nodes and

performing rotation to preserve RB tree property.

� Procedure RB-INSERT-FIXUP(T, x).

RB-INSERT()

RB-INSERT(T, x)
1. TREE-INSERT(T, x)
2. RB-INSERT-FIXUP(T, x)

TREE-INSERT()
TREE-INSERT(T, x)
1. y � NIL
2. z � root[T]
3. while (z !=nil[T])
4. do y � z //set y to a node where x may be inserted
5. if (key[x] < key[z])
6. then z � left[z]
7. else z � right[z]
8. p[x] � y // insert x as child of y8. p[x] � y // insert x as child of y
9. if (y==NIL)
10. then root[T] � x
11. else if (key[x] < key[y])
12. then left[y] �x
13. else right[y] � x
14. left[x] � nil[T]
15. right[x] � nil[T]
16. color[x] � RED

x

y

RB-INSERT-FIXUP()

• Problem: we may have one pair of consecutive reds

where we did the insertion.

• Solution: rotate it up the tree and away…

Three cases have to be handled…

Case 1: uncle y is red

new xp[p[x]]

• p[p[x]] (x’s grandparent) must be black, since x and p[x] are both red and there are no
other violations of property 4.

• Make p[x] and y black ⇒ now x and p[x] are not both red. But property 5 might now

be violated.

• Make p[p[x]] red ⇒ restores property 5.

• The next iteration has p[p[x]] as the new x (i.e., x moves up 2 levels).

C

A D

B

α

β γγγγ

δδδδ εεεεx

y

C

A D

B

α

β γγγγ

δδδδ εεεε

new x

x is a right child here.
Similar steps if x is a left child.

p[x]

p[p[x]]

RB-INSERT-FIXUP(): Case 1

RB-Insert-Fixup (T, x)

1. while (x != root[T] and color[p[x]] == RED)

2. do if (p[x] == left[p[p[x]]])

3. then y ← right[p[p[x]]]

4. if (color[y] == RED)

←5. then color[p[x]] ← BLACK // Case 1

6. color[y] ← BLACK // Case 1

7. color[p[p[x]]] ← RED // Case 1

8. x ← p[p[x]] // Case 1

RB-INSERT-FIXUP(): Case 2 & 3

RB-INSERT-FIXUP(T, x) (Contd.)

9. else if x == right[p[x]] // color[y] ≠ RED

10. then x ← p[x] // Case 2

11. LEFT-ROTATE(T, x) // Case 2

12. color[p[x]] ← BLACK // Case 3

←13. color[p[p[x]]] ← RED // Case 3

14. RIGHT-ROTATE(T, p[p[x]]) // Case 3

15. else if p[x] == right[p[p[x]]])

then (same as 3-14 with “right” and “left” exchanged)

16. color[root[T]] ← BLACK

Case 2 – y is black, x is a right child

C C

• Left rotate around p[x], p[x] and x switch roles ⇒ now x is a

left child, and both x and p[x] are red.

• Takes us immediately to case 3.

C

A

B
α

β γγγγ

δδδδ

x

y

C

B

A

α β

γγγγ

δδδδ

x

y

p[x]
p[x]

Case 3 – y is black, x is a left child

• Make p[x] black and p[p[x]] red.

• Then right rotate on p[p[x]]. Ensures property 4 is maintained.

• No longer have 2 reds in a row.

• p[x] is now black ⇒ no more iterations.

B

A

α β γγγγ δδδδ

C

B

A

α β

γγγγ

δδδδ y

p[x]
C

x

x

x

x

x

x

Algorithm Analysis

• O(lg n) time to get through RB-INSERT up to the

call of RB-INSERT-FIXUP.

• Within RB-INSERT-FIXUP:

▫ Each iteration takes O(1) time.

▫ Each iteration but the last moves x up 2 levels.▫ Each iteration but the last moves x up 2 levels.

▫ O(lg n) levels ⇒ O(lg n) time.

▫ Thus, insertion in a red-black tree takes O(lg n) time.

▫ Note: there are at most 2 rotations overall.

Deletion

• Deletion, like insertion, should preserve all the RB

properties.

• The properties that may be violated depends on the

color of the deleted node.

▫ Red – OK. Why?▫ Red – OK. Why?

▫ Black?

• Steps:

▫ Do regular BST deletion.

▫ Fix any violations of RB properties that may result.

Deletion
If z contains single child

If z contains both children

x points to child of y

Connect x to parent of y

make x left or right child

of parent of y

Replace z with y

If a BLACK node is

deleted, call Fixup on x

RB Properties Violation

• If y is black, we could have violations of red-black

properties:

▫ Prop. 1. OK.

▫ Prop. 2. If y is the root and x is red, then the root has

become red.become red.

▫ Prop. 3. OK.

▫ Prop. 4. Violation if p[y] and x are both red.

▫ Prop. 5. Any path containing y now has 1 fewer black

node.

RB Properties Violation

• Prop. 5. Any path containing y now has 1 fewer black
node.
▫ Correct by giving x an “extra black.”

▫ Add 1 to count of black nodes on paths containing x.

▫ Now property 5 is OK, but property 1 is not.

▫ x is either doubly black (if color[x] = BLACK) or red & ▫ x is either doubly black (if color[x] = BLACK) or red &
black (if color[x] = RED).

▫ The attribute color[x] is still either RED or BLACK. No
new values for color attribute.

▫ In other words, the extra blackness on a node is by virtue of
x pointing to the node.

• Remove the violations by calling RB-Delete-Fixup.

Delete fixup

Deletion – Fixup

• Idea: Move the extra black up the tree until x points

to a red & black node ⇒ turn it into a black node,

• x points to the root ⇒ just remove the extra black, or

• We can do certain rotations and recoloring and finish.

• Within the while loop:• Within the while loop:

▫ x always points to a non root doubly black node.

▫ w is x’s sibling.

▫ w cannot be nil[T], since that would violate property 5 at

p[x].

• 8 cases in all, 4 of which are symmetric to the other.

Case 1 – w is red

B

A D

C E

α β

B

A ε ζ

x w
D

C

E

x new
w

p[x]

C E

γ δ ε ζ
α β γ δ

w

• w must have black children.
• Make w black and p[x] red (because w is red p[x] couldn’t have

been red).
• Then left rotate on p[x].
• New sibling of x was a child of w before rotation ⇒ must be

black.
• Go immediately to case 2, 3, or 4.

Case 2 – w is black, both w’s children are black

B

A D

C E

α β

x w
B

A D

C E

α β

new xc
c

p[x]

C E

γ δ ε ζ

C E

γ δ ε ζ

• Take 1 black off x (⇒ singly black) and off w (⇒ red).

• Move that black to p[x].

• Do the next iteration with p[x] as the new x.

• If entered this case from case 1, then p[x] was red ⇒ new x is

red & black ⇒ color attribute of new x is RED ⇒ loop

terminates. Then new x is made black in the last line.

Case 3 – w is black, w’s left child is red, w’s

right child is black

B

A D

C E

α β

x w
B

A C

Dα β
γ

c
c

newwx

γ δ ε ζ
δ

ε ζ

E

• Make w red and w’s left child black.

• Then right rotate on w.

• New sibling w of x is black with a red right child ⇒ case 4.

Case 4 – w is black, w’s right child is red

B

A D

C E

α β

B

A

α β γ δ

ε ζ

x w
D

C

E

x

c

c’

γ δ ε ζ
α β γ δ

• Make w be p[x]’s color (c).

• Make p[x] black and w’s right child black.

• Then left rotate on p[x].

• Remove the extra black on x (⇒ x is now singly black) without

violating any red-black properties.

• All done. Setting x to root causes the loop to terminate.

Analysis

• O(lg n) time to get through RB-DELETE up to the
call of RB-DELETE-FIXUP.

• Within RB-DELETE-FIXUP:
▫ Case 2 is the only case in which more iterations occur.
� x moves up 1 level.

� Hence, O(lg n) iterations.� Hence, O(lg n) iterations.

▫ Each of cases 1, 3, and 4 has 1 rotation ⇒ ≤ 3 rotations
in all.

▫ Hence, O(lg n) time.

Augmenting Data Structures

Augmenting Data Structures

• The idea of augmenting data structures is fairly

simple. We want to add data to the elements of our

data structure that help us to quickly get to some type

of information.

• Technically you can augment a data structure with • Technically you can augment a data structure with

whatever information you want, but certain things

don't allow for the data structure to be efficiently

implemented. In order to be practical, the augmented

data must be updatable with the same order as the

normal operations of the data structure.

Augmenting BSTs

• For BSTs, we can come up with a simple rule for

what types of data we can augment the structure with.

• Any augmentation where the value of a node can be

calculated from the values of the children will

preserve the speed requirements.preserve the speed requirements.

• This holds because only O(log n) nodes are going to

have one of their descendants changed.

• Most of the values that we typically talk about in

relation to trees can be calculated this way which

means we can augment the tree with them.

Dynamic order statistic (ith element)

• Red-black tree gives a total order via inorder traversal, i.e.,
reflecting the rank of an element.
▫ Two additional operations:
� Find ith smallest element.
� Find the rank of an element.

• How to modify it?

• Add a field, size in every node, i.e., size[x] is the size of the • Add a field, size in every node, i.e., size[x] is the size of the

subtree rooted at x, including x.

• So assume sentinel’s size size[NIL]=0, then,

size[x]=size[left[x]]+size[right[x]]+1.

• If so, easy to find the ith element, or the rank of an element in

log(n) time.

Dynamic order statistic tree

Retrieving element with rank i

OS-SELECT(x,i)
1. r � size[left[x]] +1
2. if i == r
3. then return x
4. else if (i <r)

Find ith smallest element in the tree rooted at x in O(lg n) time

4. else if (i <r)
5. then return OS-SELECT(left[x],i)
6. else return OS-SELECT(right[x] , i-r)

•Here r is number of keys less than key of x, so rank of x is r+1.

Find rank of an element

Give a pointer to node x in an order-statistic tree T,

algorithm returns position of x in linear order

determined by an inorder traversal of T.

OS-RANK(T,x)OS-RANK(T,x)
1. r � size[left[x]] +1
2. y � x
3. while y != root[T]
4. do if y == right[p[y]])
5. then r � r + size[left[p[y]]]+1
6. y � p[y]
7. return r

Maintaining subtree sizes

• Insertion: two passes:

▫ Insert x into tree, by going down, increase size by 1 for

each node visited.

▫ Modify the color and rotation by going up.

� Only the rotation will affect the size of some nodes,Only the rotation will affect the size of some nodes,

� Fortunately, local modification.

• Same for deletion operation.

Maintaining subtree sizes

Two lines of addition code required in LEFT-ROTATE()
size[y] � size[x]
size[x] � size[left[x]] + size[right[x] + 1

Two lines of addition code required in RIGHT-ROTATE()
size[x] � size[y]
size[y] � size[left[y]] + size[right[y]] +1

Interval tree: dynamic set of intervals

Intervals

• Closed intervals [t1,t2], with t1 ≤ t2,

• open intervals,

• half-intervals ≤ t1, ≥ t1

• New operations:• New operations:

▫ INTERVAL-INSERT(T, x), x=[t1,t2].

▫ INTERVAL-DELETE(T, x), x=[t1,t2].

▫ INTERVAL-SEARCH(T, i), return a pointer x such that

the interval of x overlaps with i.

How to implement?

• Select a underlying DS, red-back tree
▫ The node x contains interval int[x], and the low[int[x]]

is the node’s key.

• Additional information: max

• Maintain the information:
▫ max[x]=max(high[int[x]],max[left[x]],max[right[x]]). ▫ max[x]=max(high[int[x]],max[left[x]],max[right[x]]).

• Implementation of INTERVAL-SEARCH.

Interval trichotomy

If go to right, then safe since there is no interval in the left overlapping with i.
If go to left, either there is an interval in the left overlapping with i or there is
no overlaps. In the latter, we can prove that there will also be no overlaps
in the right.

Interval Trees

• Support following operations.

4 5 6 7 8 9 10 11 … 15 16 17 18 19 … 21 22 23

(7, 10)

(5, 11)

(4, 8)

(15, 18)

(17, 19)

(21, 23)

• Support following operations.

• Interval-Insert(i, S): Insert interval i = (li, ri) into tree S.

• Interval-Delete(i, S): Delete interval i = (li, ri) from tree S.

• Interval-Find(i, S): Return an interval x that overlaps i,

or report that no such interval exists.

Interval Trees

4 5 6 7 8 9 10 11 … 15 16 17 18 19 … 21 22 23

(7, 10)

(5, 11)

(4, 8)

(15, 18)

(17, 19)

(21, 23)

• Key ideas:
(17, 19)

• Key ideas:

▫ Tree nodes contain interval.

▫ BST keyed on left endpoint.

(4, 8)

(17, 19)

Key Interval

(5, 11) (21, 23)

(15, 18)

(7, 10)

Interval Trees

4 5 6 7 8 9 10 11 … 15 16 17 18 19 … 21 22 23

(7, 10)

(5, 11)

(4, 8)

(15, 18)

(17, 19)

(21, 23)

• Key ideas:
(17, 19) 23

• Key ideas:

▫ Tree nodes contain interval.

▫ BST keyed on left endpoint.

▫ Additional info: store max

endpoint in subtree rooted

at node.

(4, 8)

(17, 19)

max in
subtree

(5, 11) 18 (21, 23) 23

8 (15, 18) 18

(7, 10) 10

23

Finding an Overlapping Interval

• Interval-Find(i, S): return an interval x that overlaps i

= (li, ri), or report that no such interval exists.

(17, 19) 23

(4, 8)

(5, 11) 18 (21, 23) 23

8 (15, 18) 18

(7, 10) 10

