
Fibonacci Heaps

Manoj Kumar

DTU, Delhi



Fibonacci Heap

• A Fibonacci heap is a collection of trees satisfying
the minimum-heap property, that is, the key of a child
is always greater than or equal to the key of the
parent.

• This implies that the minimum key is always at the
root of one of the trees.root of one of the trees.

• Compared with binomial heaps, the structure of a
Fibonacci heap is more flexible.



Fibonacci Heap

• The trees do not have a prescribed shape and in the
extreme case the heap can have every element in a
separate tree.

• This flexibility allows some operations to be
executed in a "lazy" manner, postponing the work for
later operations.later operations.

• For example merging heaps is done simply by
concatenating the two lists of trees, and operation
decrease key sometimes cuts a node from its parent
and forms a new tree.



Fibonacci Heap

• Similar to binomial heaps, but less rigid structured.

• Binomial heap:  eagerly consolidate trees after each 

insert.

• Fibonacci heap:  lazily defer consolidation until next 

delete-min.

• Decrease-key and union run in O(1) time.

• "Lazy" unions.



Fibonacci Heap

• Every node has degree at most D(n)=O(log n) and

• the size of a subtree rooted in a node of degree k is at least
Fk + 2, where Fk is the kth Fibonacci number.

• This is achieved by the rule that we can cut at most one child
of each non-root node.of each non-root node.

• When a second child is cut, the node itself needs to be cut
from its parent and becomes the root of a new tree.

• The number of trees is decreased in the operation delete
minimum, where trees are linked together.



Fibonacci Heap

• As a result of a relaxed structure, some operations
can take a long time while others are done very
quickly.

• In the amortized running time analysis we pretend
that very fast operations take a little bit longer than
they actually do.they actually do.

• This additional time is then later subtracted from the
actual running time of slow operations.



Fibonacci Heap

• The amount of time saved for later use is measured at
any given moment by a potential function.

• The potential of a Fibonacci heap is given by

Potential = t + 2m

where t is the number of trees in the Fibonacci heap,where t is the number of trees in the Fibonacci heap,
and m is the number of marked nodes.

• A node is marked if at least one of its children was
cut since this node was made a child of another node.



Comparison

†  amortized



Fibonacci heaps: Structure
Fibonacci heap.

•Set of heap-ordered trees.
•Maintain pointer to minimum element.
•Set of marked nodes.



Notations
• n(H)             = number of nodes in heap.

• degree(x) = number of children of node x.

• t(H) = number of trees in heap H.

• m(H) = number of marked nodes in heap H.

10

723

30

17

35

26 46

24

39

4118 52

3

44

rank = 3    min

Heap H

trees(H) = 5 marks(H) = 3

marked

n = 14



Implementation

• Represent trees using left-child, right sibling pointers and circular,

• doubly linked list.

– can quickly splice off subtrees

• Roots of trees connected with circular doubly linked list.

– fast union

• Pointer to root of tree with min element.• Pointer to root of tree with min element.

– fast find-min



Potential Function



Maximum degree

• We assume that there is a known upper bound D(n)

on the maximum degree of any node in an n-node 

Fibonacci heap.

• D(n) = O( lg n)



Operations on Fibonacci Heaps

• Creating a new Fibonacci Heap

▫ MAKE-FIB-HEAP()

▫ Returns the Fabonacci heap object H, where 

� n[H]=0

� min[H]=NIL� min[H]=NIL

� t[H] = 0

� m[H] = 0

� Φ[H] = 0

▫ Amortized cost of  MAKE-FIB-HEAP() is O(1).



Inserting a node: FIB-HEAP-INSERT(H , x)



Insert…



Insert…

Running time:
Increase in potential function is
((t(H) + 1) + 2 m(H))   - (t(H) + 2 m(H))  = 1
Since actual cost is O(1), 
The amortized cost is O(1) + 1 = O(1)



FIB-HEAP-INSERT(H , x)

FIB-HEAP-INSERT(H,x)

1. degree[x]�0

2. P[x] � NIL

3. child[x] � NIL

4. left[x] � x

5. right[x]� x5. right[x]� x

6. mark[x] � FALSE

7. Concatenate  the root list containing x with root list H

8. If min[H] = NIL or key[x] < key[min[H]] 

9. then min[H] � x

10. n[H] � n[H] + 1 



Union

H1 H2



Union…

Running time:
Increase in potential function is
Φ(H) – (Φ(H1) + Φ(H2))
= (t(H) + 2 m(H))  - ((t(H1) + 2 m(H1)) + ( t(H2) + 2 m(H2)))
= 0
Because t(H) = t(H1) + t(H2) and m(H) = m(H1) + m(H2)
Since actual cost is O(1), 
The amortized cost is O(1) + 0 = O(1)

H1 H2

The amortized cost is O(1) + 0 = O(1)



UNION

FIB-HEAP-UNION(H1,H2)

1. H � MAKE-FIB-HEAP( )

2. min[H] � min[H1]

3. Concatenate  the root lists of H1 with the root list of H

4. If (min[H1] = NIL) or (min[H2] ≠ NIL  and min[H2]< min[H1]) 

5. then min[H] � min[H2]5. then min[H] � min[H2]

6. n[H] � n[H1] + n[H2]

7. free the objects H1 and  H2

8. return H



Delete-Min.



Delete-Min….



Delete-Min : Consolidate



Delete-Min…



Delete-Min…



Delete-Min…



Delete-Min…



Delete-Min…



Delete-Min…



Delete-Min…



Delete-Min…



Delete-Min…



Delete-Min…



Delete-Min Analysis

Actual Cost

• If degree of min[H] is D(n), then D(n) children are 

added into root list of H and min[H] is removed from 

root list of H.

• Consolidate operation is called on a root list of length • Consolidate operation is called on a root list of length 

D(n) + t(H) -1

• In consolidation, every time through the while loop 

(line 6-12), one of the roots is linked to another. Total 

work in for loop is at most O(D(n) + t(H)).

• Thus actual cost is O(D(n) + t(H)).



Delete-Min Analysis

Change in Potential 

• Potential before extraction: t(H) + 2 m(H).

• At most D(n) +1 roots remain and no nodes become 

marked during the operation, potential after the 

operation is ((D(n) +1) + 2 m(H)).operation is ((D(n) +1) + 2 m(H)).

• Change in potential

((D(n) +1) + 2 m(H)) – (t(H) + 2 m(H))

=(D(n) + 1 – t(H))

Amortized cost = O(D(n) + t(H)) + D(n) + 1 – t(H))

= O(D(n)) + O(t(H) + D(n) +1– t(H)

= O(D(n)) = O(lg n)



FIB-HEAP-EXTRACT-MIN(H)

FIB-HEAP-EXTRACT-MIN(H)

1. z � min[H] 

2. if z ≠ NIL

3. then for each child x of z 

4. do add x to the root list of H

5. p[x] � NIL5. p[x] � NIL

6. remove z from the root list of H

7. if z = right[z]

8. then min[H] � NIL

9. else min[H] � right[z]

10. CONSOLIDATE(H)

11. n[H] � n[H] -1

12. return z



CONSOLIDATE(H)
CONSOLIDATE(H)

1. for i � 0 to D(n[H])

2. do A[i] � NIL

3. for each node w in the root list of H

4. do x � w

5. d � degree[x]

6. while A[d] ≠ NIL

7. do y � A[d]

8. if key[x] > key[y]8. if key[x] > key[y]

9. then exchange  x �� y

10. FIB-HEAP-LINK(H,y,x)

11. A[d] � NIL

12. d � d +1

13. A[d] � x

14. min[H] � NIL

15. for i � 0 to D(n[H])

16. do if A[i] ≠ NIL

17. then add A[i] to the root list of H

18. if min[H] = NIL or key[A[i]] < key[min[H]]

19. then min[H] � A[i]

FIB-HEAP-LINK(H, y, x)

1. Remove y from the root list of H 

2. Make y a child of x, incrementing degree[x]

3. Mark[y]n� FALSE



Decrease key



Decrease key



Decrease key



Decrease key



Decrease key



Decrease key



Decrease key



Decrease key



FIB-HEAP-DECREASE-KEY(H, x, k)

FIB-HEAP-DECREASE-KEY(H, x, k)
1. if k > key[x]

2. then error “new key is greater than current key”

3. key[x] � k

4. y � p[x]

5. if y ≠ NIL and key[x] < key[y]5. if y ≠ NIL and key[x] < key[y]

6. then CUT(H,x,y)

7. CASCADEING-CUT(H,y)

8. if key[x] < key[min[H]]

9. then min[H] � x



CUT( ) & CASCADING-CUT( )

CUT(H, x, k)
1. remove x from the child list of y, decreasing degree[y]

2. add x to the root list of H

3. p[x] � NIL

4. mark[x] � FALSE

CASCADING-CUT(H, y)
1. z � p[y]

2. if z ≠ NIL 

3. then if mark[y] = FALSE

4. then mark[y] � TRUE

5. else CUT(H,y,z)

6. CASCADING-CUT(H,z)



Decrease key Analysis

Actual cost

• FIB-HEAP-DECREASE-KEY procedure takes O(1) 

time plus time to perform CASCADING-CUT.

• Let CASCADING-CUT is called c times, each time it 

takes O(1) time excluding recursive calls.takes O(1) time excluding recursive calls.

• Thus actual cost of FIB-HEAP-DECREASE-KEY is 

O(c).



Decrease key Analysis

• Change in potential.

• Each CASCADING-CUT except the last one , cuts a 
marked node and clears mark bit.

• Afterward there are t(H) +c trees. (c-1 trees created 
from by cascading cuts and at most m(H) – c +2
marked. ( c-1 were unmarked by cascading cuts and marked. ( c-1 were unmarked by cascading cuts and 
the last call of CASCADING-CUT may have marked 
a node)

• Change in potential= ((t(H) + c) + 2 (m(H) – c +2)) –
(t(H) + 2 m(H)) = 4 – c.

• Amortized Cost = Actual Cost + change in potential

= O(c) + 4 – c = O(1)



Delete x



B-Trees

Note: Each leaf
has the same depth

A B-tree whose keys are the consonants of English.  All leaves are at the same depth in the 
tree. The lightly shaded nodes are examined in a search for the letter Rtree. The lightly shaded nodes are examined in a search for the letter R



Definition of B-trees
• A B-tree T is a rooted tree (with root root[T]) having the following 

properties.

1. Every node x has the following fields:

a. n[x], the number of keys currently stored in node x,

b. the n[x] keys themselves, stored in nondecreasing order:

key1[x] ≤ key2[x] …. ≤ keyn[x][x], and

c. leaf [x], a boolean value that is TRUE if x is a leaf and FALSE if x is an c. leaf [x], a boolean value that is TRUE if x is a leaf and FALSE if x is an 

internal node.

2. If x is an internal node, it also contains n[x] + 1 pointers c1[x], c2[x], . . . 

, cn[x]+1[x] to its children. Leaf nodes have no children, so their ci fields are 

undefined.

3. The keys keyi[x] separate the ranges of keys stored in each subtree: if ki is 

any key stored in the subtree with root ci[x], then

k1 ≤ key1[x] ≤ k2 ≤ key2[x] ….. ≤ keyn[x][x] kn[x]+1 .



Definition of B-trees
4. Every leaf has the same depth, which is the tree's height h.

5. There are lower and upper bounds on the number of keys a node can 

contain. These bounds can be expressed in terms of a fixed integer t 2 

called the minimum degree of the B-tree:

a. Every node other than the root must have at least t - 1 keys. Every 

internal node other than the root thus has at least t children. If the tree is 

nonempty, the root must have at least one key.nonempty, the root must have at least one key.

b. Every node can contain at most 2t - 1 keys. Therefore, an internal node 

can have at most 2t children. We say that a node is full if it contains exactly 

2t - 1 keys.

The simplest B-tree occurs when t = 2. Every internal node then has either 

2, 3, or 4 children, and we have a 2-3-4 tree. In practice, however, much 

larger values of t are typically used.



Definition of B-trees

•∃ t ≥ 2 called the minimum degree.
x ≠ root ⇒ t –1 ≤ n[x] ≤ 2t–1
x = root ⇒ n[x] ≤ 2t–1



Application: Disk Accesses

• Each node is stored as a page.

• Page size determines t.

▫ t is usually large

▫ Implies branching factor is large, so height is small.

• Disk accesses dominate performance in this • Disk accesses dominate performance in this 

application.



B-Tree: Example

A B-tree of height 2 containing over one billion 
keys. Each internal node and leaf contains 1000 

keys. There are 1001 nodes at depth 1 and over one 
million leaves at depth 2. Shown inside each node x 

is n[x], the number of keys in x.



Height of B-tree

If n 1, then for any n-key B-tree T of height h and minimum degree t 2,

If n ≥ 1, then for any n-key B-tree T of height h and 

minimum degree t ≥ 2



Proof

• If a B-tree has height h, the number of its nodes is 

minimized when the root contains one key and all 

other nodes contain t - 1 keys. 

• In this case, there are 2 nodes at depth 1, 2t nodes at 

depth 2, 2t2 nodes at depth 3, and so on, until at depth 2, 2t nodes at depth 3, and so on, until at 

depth h there are 2th-1 nodes. Thus, the number n of 

keys satisfies the inequality



B-Tree Operations

• Search:

� Θ(logtn) disk accesses.

� O(t logtn) CPU time.

• Create:

� O(1) disk accesses.

• In the code that follows, 
we use:

▫ Disk-Read: To move 
node from disk to 
memory.� O(1) disk accesses.

� O(1) CPU time.

• Insert and Delete:

� O(logtn) disk accesses.

� O(t logtn) CPU time.

memory.

▫ Disk-Write: To move 
node from memory to 
disk.

• We assume root is in 
memory.



Search

B-TREE-SEARCH(x, k)
1. i � 1;
2. while i ≤ n[x] and k > keyi[x] 
3. do  i � i + 1
4. if i ≤ n[x] and k = keyi[x] 
5. then return(x, i)
6. if leaf[x] 

Search(root[T], k)
returns (y,i) s.t.
keyi[y] = k or NIL
if no such key.

Worst-case:6. if leaf[x] 
7. then return NIL
8. else DiskRead(ci[x]);
9. return B-TREE-SEARCH(ci[x], k)

Worst-case:
Θ(logtn) disk reads.
Θ(t logtn) CPU time.



Create

B-TREE-CREATE(T)
1. x � ALLOCATE-NODE()
2. leaf[x] �TRUE
3. n[x] � 0
4. DISK-WRITE(x)
5. root[T] � x

• To create a nonempty tree, first create an empty tree, 

then  insert nodes.

• O(1) time

5. root[T] � x



Splitting

Applied to a “full” child of a “nonfull” parent.  “full” ≡ 2t–1 keys.

Example: (t=4)

… N W … 

P Q R S T U V

T1T2T3T4T5T6T7T8

y = ci[x]

x

… N S W … 

P Q R

T1T2T3T4 T5T6T7T8

y = ci[x]

x

T U V

z = ci+1[x]

Split



Split Child
B-TREE-SPLIT-CHILD(x, i, y)
1. z � ALLOCATE-NODE()
2. leaf[z] � leaf[y]
3. n[z] � t–1
4. for j � 1 to t–1 
5. do keyj[z] � keyj+t[y]
6. if not leaf[y] 
7. then for j � 1 to t 
8. do c [z] � c [y]8. do cj[z] � cj+t[y]
9. n[y] � t–1
10. for j � n[x] + 1 downto i+1 
11. do  cj+1[x] � cj[x]
12. ci+1[x] � z
13. for j � n[x] downto i
14. do keyj+1[x] � keyj[x]
15. keyi[x] � keyt[y]
16. n[x] � n[x] + 1
17. Disk-Write(y)
18. Disk-Write(z)
19. Disk-Write(x)

Θ(t) CPU time.
O(1) disk writes.



Insert

B-TREE-INSERT(T, k)
1. r � root[T]
2. if n[r] = 2t–1 
3. then  s � Allocate-Node()
4. root[T] � s
5. leaf[s] � false
6. n[s] � 0
7. c [s] � r

First, modify tree
(if necessary) to create
room for new key.
Then, call Insert-Nonfull().7. c1[s] � r

8. B-TREE-SPLIT-CHILD(s, 1, r);
9. B-TREE-INSERT-NONFULL(s, k)
10. else   B-TREE-INSERT-NONFULL(r, k)

A D F H L N P

T1T2T3T4T5T6T7T8

root[T]

H 

A D F

T1T2T3T4 T5T6T7T8

L N P

r

root[T]
s

r

Then, call Insert-Nonfull().

Example:



Insert-Nonfull

B-TREE-INSERT-NONFULL(x, k)
1. i � n[x]
2. if leaf[x] 
3. then  while i ≥ 1 and k < keyi[x] 
4. do keyi+1[x] � keyi[x]
5. i � i–1
6. keyi+1[x] � k
7. n[x] � n[x] + 1

Worst Case:
Θ(t logtn) CPU time.
Θ(logtn) disk writes.

7. n[x] � n[x] + 1
8. DISK-WRITE(x)
9. else while i ≥ 1 and k < keyi[x] 
10. do  i � i–1
11. i � i + 1
12. DISK-WRITE(ci[x])
13. if n[ci[x]] = 2t–1 
14. then  B-TREE-SPLIT-CHILD(x, i, ci[x])
15. if k > keyi[x] 
16. then  i � i + 1
17. B-TREE-INSERT-NONFULL(ci[x], k)



t = 3



Deletion

• Main Idea: Recursively descend tree.

• Ensure any non-root node x that is considered has 

at least t keys.

• May have to move key down from parent.• May have to move key down from parent.



Deletion:cases
Case 0: Empty root -- make root’s only child the new root.

x

c1[x]

Case 1: k in x, x is a leaf -- delete k from x.

… k… 

≥ t keys

x

leaf …   … 

≥ t–1 keys

x

leaf



Deletion:cases
Case 2: k in x, x internal.

… k… 

x

not a leaf

y z

Subcase A: y has at least t keys -- find predecessor k´ of k in subtree
rooted at y, recursively delete k´, replace k by k´ in x.

… k… not a leaf

y
≥ t keys

k´
pred
of k

≥ t keys

x

… k´… 

y

x



Deletion:cases
Subcase B: z has at least t keys -- find successor k´ of k in subtree

rooted at z, recursively delete k´, replace k by k´ in x.

… k… not a leaf

z
≥ t keys ≥ t keys

x

… k´… 

z

x

k´
succ
of k

Subcase C: y and z both have t–1 keys -- merge k and z into y, fre
z, recursively delete k from y.

… k… 

x
not a leaf

y z
t–1 keys t–1 keys

…   … 

x
not a leaf

y’s keys, k, z’s keysy

2t–1 keys



Deletion:cases

Case 3: k not in internal node.  Let ci[x] be the root of the 
subtree that must contain k, if k is in the tree.  If ci[x] has at 
least t keys, then recursively descend; otherwise, execute 3.A 
and 3.B as necessary.

Subcase A: ci[x] has t–1 keys, some sibling has at least t keys.

…        … not a leaf

ci[x]

t–1 keys

k

x

k1

… k2

…        … 

ci[x]

t keys

k

x

k2

… k1

recursively
descend



Deletion:cases

Subcase B: ci[x] and sibling both have t–1 keys.

…        … not a leaf

ci[x]

t–1 keys

x

k1

t–1 keys

ci+1[x]

…        … 

ci[x]’s keys,        , ci+1[x]’s keys

ci[x]

2t–1 keys

x

k1

recursively
descend

t–1 keys

k

t–1 keys 2t–1 keys

k



Deletion: Summary
1. If the key k is in node x and x is a leaf, delete the key k from x.
2. If the key k is in node x and x is an internal node, do the following.

a. If the child y that precedes k in node x has at least t keys, then find the predecessor k'
of k in the subtree rooted at y. Recursively delete k', and replace k by k' in x. (Finding k'
and deleting it can be performed in a single downward pass.)

b. Symmetrically, if the child z that follows k in node x has at least t keys, then find the
successor k' of k in the subtree rooted at z. Recursively delete k', and replace k by k'
in x. (Finding k' and deleting it can be performed in a single downward pass.)

c. Otherwise, if both y and z have only t- 1 keys, merge k and all of z into y, so
that x loses both k and the pointer to z, and y now contains 2t - 1 keys. Then, free z andthat x loses both k and the pointer to z, and y now contains 2t - 1 keys. Then, free z and
recursively delete k from y.

3. If the key k is not present in internal node x, determine the root ci[x] of the
appropriate subtree that must contain k, if k is in the tree at all. If ci[x] has
only t - 1 keys, execute step 3a or 3b as necessary to guarantee that we descend
to a node containing at least t keys. Then, finish by recursing on the appropriate
child of x.

a. If ci[x] has only t - 1 keys but has a sibling with t keys, give ci[x] an extra key by
moving a key from x down into ci[x], moving a key fromci[x]'s immediate left or right
sibling up into x, and moving the appropriate child from the sibling into ci[x].

b. If ci[x] and all of ci[x]'s siblings have t - 1 keys, merge ci with one sibling, which
involves moving a key from x down into the new merged node to become the median
key for that node.



Deletion

t=3
Minimum keys = 2
Maximum keys = 5



Deletion



Some exercises
1. Why don't we allow a minimum degree of t = 1?

2. For what values of t is the tree of Figure 19.1 a legal B-tree?

3. Show all legal B-trees of minimum degree 2 that represent {1, 2, 3, 4, 5}.

4. Derive a tight upper bound on the number of keys that can be stored in a B-tree of height h as a function of the minimum degree t.

5. Describe the data structure that would result if each black node in a red-black tree were to absorb its red children, incorporating their

children with its own.

6. Show the results of inserting the keys

7. F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B, X, Y, D, Z, Ein order into an empty B-tree. Only draw the configurations of the tree

just before some node must split, and also draw the final configuration.

8. Explain under what circumstances, if any, redundant DISK-READ or DISK-WRITE operations are performed during the course of8. Explain under what circumstances, if any, redundant DISK-READ or DISK-WRITE operations are performed during the course of

executing a call to B-TREE-INSERT. (A redundant DISK-READ is a DISK-READ for a page that is already in memory. A

redundant DISK-WRITE writes to disk a page of information that is identical to what is already stored there.)

9. Explain how to find the minimum key stored in a B-tree and how to find the predecessor of a given key stored in a B-tree.

10. Suppose that the keys {1, 2, . . . , n} are inserted into an empty B-tree with minimum degree 2. How many nodes does the final B-

tree have?

11. Since leaf nodes require no pointers to children, they could conceivably use a different (larger) t value than internal nodes for the

same disk page size. Show how to modify the procedures for creating and inserting into a B-tree to handle this variation.

12. Suppose that B-TREE-SEARCH is implemented to use binary search rather than linear search within each node. Show that this

makes the CPU time required O(lg n), independently of how t might be chosen as a function of n.

13. Suppose that disk hardware allows us to choose the size of a disk page arbitrarily, but that the time it takes to read the disk page is a

+ bt, where a and b are specified constants and t is the minimum degree for a B-tree using pages of the selected size. Describe how

to choose t so as to minimize (approximately) the B-tree search time. Suggest an optimal value of t for the case in which a = 30

milliseconds and b = 40 microseconds.

14. Show the results of deleting C, P, and V, in order, from the tree of Figure (f).


