Binomial Heaps

Manoj Kumar DTU, Delhi

Binomial Heaps

- Known as *mergeable heaps*.
- Supports following five operations:
- 1. MAKE-HEAP(): creates and returns a new heap with no elements.
- 2. **INSERT(H, x)**: Inserts node x, into heap H.
- **3. MINIMUM(H)**: returns a pointer to the node in heap H whose key is minimum.
- **4. EXTRACT-MIN(H):** deletes the node from heap H whose key is minimum, returning pointer o the node.
- 5. UNION(H1,H2): creates and returns new heap that contains all the elements of heaps H1 and H2. H1 and H2 are destroyed in this process.

Binomial Heaps: Definitions

Binomial Heap: Collection of binomial trees (satisfying some properties).

Binomial Trees

- Definition is **inductive**.
- These are **ordered** trees, i.e., order of children is important.

Binomial Trees

- Base Case: B_0 = single node is a binomial tree.
- Inductive Step:

$$B_k = B_{k-1}$$

is a binomial tree.

Examples

<u>depth</u>	# nodes
0	1
1	4
2	6
3	4
4	1

Another Way to Look at B_k

Properties of Binomial Trees

Lemma 1: For the binomial tree B_k ,

- 1. There are 2^k nodes.
- **2.** Tree height is k.
- 3. $\binom{k}{i}$ nodes at depth i, i = 0, 1, ..., k [binomial coefficients].
- **4.** Root has degree k, other nodes have smaller degree. i^{th} child of root is root of subtree B_i , where i = k-1, k-2, ..., 0 [B_{k-1} is Left Most, B_0 is Right Most].

Proof: Inductive

- 1. Binomial tree B_k consists of two copies of B_{k-1} , so B_k has $2^{k-1} + 2^{k-1} = 2^k$ nodes.
- 2. The way in which two copies of are connected, height of B_k is one greater than height of B_{k-1} . So the height of B_k is (k-1)+1=k.

Proof: Inductive

3. Let D(k,i) be the number of nodes at depth I of binomial tree B_k . Since B_k is composed of two copies of B_{k-1} linked together, a node at depth i in B_{k-1} appears in B_k once at depth i and once at depth i+1.

Thus number of nodes in B_k at depth i is the number of nodes at depth i in B_{k-1} plus the number of nodes at depth i-1 in B_{k-1} . Thus

$$D(k,i) = D(k-1,i) + D(k-1,i-1)$$

$$= \binom{k-1}{i} + \binom{k-1}{i-1} = \binom{k}{i}$$

proof

4. Root degree of $B_k = 1 + \text{root degree of } B_{k-1}$ = 1 + k-1, induction hypothesis = k

Corollary: The maximum degree in an n-node binomial tree is lg n.

Binomial Heaps

- Binomial heap H is a set of binomial trees satisfying following binomial-heap properties:
 - 1 Each binomial tree in H is Heap ordered: the key of a node is greater than or equal to the key of it's parent.
 - Implies root of a binomial tree has the smallest key in that tree.
 - 2 There is at most one binomial tree in H whose root has a given degree.
 - Implies B.H. with n nodes has at most $\lfloor \lg n \rfloor + 1$ B.T.'s. Think of n in binary: $\langle b_{\lfloor \lg n \rfloor}, ..., b_o \rangle$, i.e.,

$$n = \sum_{i=1}^{\lfloor \lg n \rfloor} b_i 2^i$$

B.H contains B_i iff b_i is 1.

Representing Binomial Heaps

Operations on Binomial Heaps

MAKE-BINOMIAL-HEAP(): simply allocates and return an object H, where head[H] = NIL. Running time is $\Theta(1)$

MAKE-BINOMIAL-HEAP()

- 1. Create new head node H
- 2. head[H]←NIL
- 3. return H

Operations on Binomial Heaps

```
BINOMIAL-HEAP-MINIMUM(H)

1. y ← NIL;

2. x ← head[H];

3. min ← ∞;

4. while x ≠ NIL do

5. if key[x] < min then

6. min ← key[x];

7. y ← x

8. x ← sibling[x]

9. return y
```

Time is $O(\lg n)$.

Linking Two Binomial Trees

Linking two binomial trees whose roots have same degree.

BINOMIAL-LINK(y,z)

- 1. $p[y] \leftarrow z$;
- 2. $sibling[y] \leftarrow child[z];$
- 3. $child[z] \leftarrow y;$
- 4. $degree[z] \leftarrow degree[z] + 1$

UNION

First, simply merge the two root lists by root degree (like merge sort).

Remaining Problem: Can have two trees with the same root degree.

UNION...

Union traverses the new root list like this:

Depending on what x, next-x, and sibling[next-x] point to, Union links trees with the same root degree.

Note: We may temporarily create <u>three</u> trees with the same root degree.

UNION...

UNION:Example

Code for UNION

```
BINOMIAL-HEAP-UNION(H<sub>1</sub>, H<sub>2</sub>)
   H \leftarrow MAKE-BINOMIAL-HEAP();
   head[H] \leftarrow BINOMIAL-HEAP-MERGE(H<sub>1</sub>, H<sub>2</sub>);
                                                                  /* simple merge of root lists */
   Free the objects H1 and H2, but not the list they point to
   if head[H] = NIL
      then return H
6. prev-x \leftarrow NIL;
   x \leftarrow head[H];
8. next-x \leftarrow sibling[x];
9. while next-x \neq NIL
         do if (degree[x] \neq degree[next-x]) or
10.
                  (sibling[next-x] \neq NIL  and degree[sibling[next-x]] = degree[x])
               then prev-x \leftarrow x;
11.
                                                                        Cases 1 & 2
                      x \leftarrow next-x;
12.
                                                                        Cases 1 & 2
               else if key[x] \le key[next-x]
13.
                    then sibling[x] \leftarrow sibling[next-x];
                                                                        Case 3
14.
                          BINOMIAL-LINK(next-x, x)
                                                                        Case 3
15.
                     else if prev-x = NIL
                                                                        Case 4
16.
                            then head[H] \leftarrow next-x
                                                                        Case 4
17.
                            else sibling[prev-x] \leftarrow next-x
18.
                                                                        Case 4
                            BINOMIAL-LINK(x, next-x);
                                                                        Case 4
19.
                            x \leftarrow next-x
20.
                                                                         Case 4
           next-x \leftarrow sibling[x]
21.
         return H
22.
```


INSERT

Inserts node x into binomial heap H, assuming that node x already been allocated and key[x] has already been filled.

BINOMIAL-HEAP-INSERT(H, x)

- 1. $H' \leftarrow MAKE-BINOMIAL-HEAP()$;
- 2. $p[x] \leftarrow NIL$;
- 3. $child[x] \leftarrow NIL;$
- 4. $sibling[x] \leftarrow NIL;$
- 5. degree[x] \leftarrow o;
- 6. head(H') \leftarrow x;
- 7. $H \leftarrow BINOMIAL-HAP-UNION(H, H')$

Time O(lg n).

x parent
key
degree
child sibling

INSERT:Example

INSERT: Example...

Extract-Minimum

• Extracts the node with minimum key from binomial heap H, and returns a pointer to the extracted node

BINOMIAL-HEAP-EXTRACT-MIN(H)

- 1. remove minimum key root x from H's root list;
- 2. $H' \leftarrow Make-B-H()$;
- 3. root list of H' = x's children in reverse order;
- 4. $H \leftarrow Union(H, H')$;
- 5. return x

Time O(lg n).

Extract-Min: Example

Extract-Min: Example

Decrease-Key

Decreases the key of a node x in a binomial heap H to a new value k.

```
BINOMIAL-HEAP-DECREASE-KEY(H, x, k)
    if k > \text{key}[x]
          then error "new key is greater than current key"
2.
    \text{key}[x] \leftarrow k;
   y \leftarrow x;
4.
   z \leftarrow p[y];
    while z \neq NIL and key[y] < key[z]
         do exchange key[y] and key[z];
7.
              exchange other satellite fields of y and z
8.
              y \leftarrow z;
9.
              z \leftarrow p[y]
10.
```

O(lg n)

Decrease-Key Example

DELETE a node

BINOMIAL-HEAP-DELETE(H, x)

- 1. BINOMIAL-HEAP-DECREASE-KEY(H, x, $-\infty$);
- 2. BINOMIAL-HEAP-EXTRACT-MIN(H)

Time is O(lg n)

