Binomial Heaps

Manoj Kumar
DTU, Delhi

Binomial Heaps

« Known as mergeable heaps.
» Supports following five operations:

1.

MAKE-HEAP(): creates and returns a new heap with
no elements.

INSERT(H, x): Inserts node X, into heap H.
MINIMUM(H): returns a pointer to the node in heap H
whose key 1s minimum.

EXTRACT-MIN(H): deletes the node from heap H
whose key 1s minimum, returning pointer o the node.

UNION(H1,H2): creates and returns new heap that
contains all the elements of heaps HI and H2. H1 and
H2 are destroyed in this process.

Delhi Technological
UUUUUUUUUU

Binomial Heaps: Definitions

Binomial Heap: Collection of binomial trees
(satisfying some properties).
Binomial Trees

e Definition 1s inductive.

» These are ordered trees, 1.e., order of children 1s
important.

®®<— Different Trees —— @§®
& b & B

XX
Delhi Technological
IIIIIIIIII

Binomial Trees

- Base Case: B, = single node 1s a binomial tree.

» Inductive Step:

s

1S a binomial tree.

Examples

nodes
0 1
1 4
2 6
3 4
4 1

Delhi Technological
UUUUUUUUUU

Another Way to Look at B,

Properties of Binomia

Lemma 1: For the binomial tree B,,
1. There are 2% nodes.

2. Tree height is k.

k
3. (i]nodes at depth1,1=0, 1, ..., k [binomial coefficients].
4. Root has degree k, other nodes have smaller degree. i

child of root 1s root of subtree B,, where 1 = k-1, k-2, ...,
0 [B,_, 1s Left Most, B, 1s Right Most].

Delhi Technological
UUUUUUUUUU

Proof: Inductive

|. Binomial tree B, consists of two copies of B,_;, so
B, has 2K! + 2k1 = 2k podes.

2. The way 1n which two copies of are connected,
height of B, is one greater than height of B, ; So the
height of B, 1s (k-1)+1=k.

Proof: Inductive

3. Let D(k,1) be the number of nodes at depth I of binomial tree
B,. Since B, is composed of two copies of B, _; linked
together, a node at depth 1 1in B, , appears in B, once at depth
1 and once at depth 1+1.

Thus number of nodes in B, at depth 11s the number of nodes at
depth 1 1n B,_; plus the number of nodes at depth i1-1 in B, ;.
Thus

D(k.i) = D(k-1.i) + D(k-1.i-1)
k-1 k-1 k
(503 - 6

By

depth iin this B, _,

w depthi-1in th PR DTL!'

proof

4. Root degree of B, = 1 + root degree of B, ,

=1+ k—1 , induction hypothesis
=k

Corollary : The maximum degree in an n-node binomial tree
is Ig n.

Binomial Heaps

« Binomial heap H 1s a set of binomial trees satisfying following
binomial-heap properties:

1 Each binomial tree in H is Heap ordered: the key of a
node 1s greater than or equal to the key of 1t’s parent.

® Implies root of a binomial tree has the smallest key in that
tree.

2 There 1s at most one binomial tree in H whose root has a
given degree.
® Implies B.H. with n nodes has at most|lg n|+ 1 B.T.’s.

Think of n in binary: (b}, -.., by), 1.€.,
lign|
n=)» b2

1=1

B.H contains B; iff b; is 1.

000
Delhi Technological
IIIIIIIIII

Representing Binomial Heaps
head[H]<) ;@P %
S &
= @ ©
(27

Each node is parent
represented by a
structure like this

key

degree

child |sibling

head[H] —(19)

Operations on Binomial Heaps

MAKE-BINOMIAL-HEAP(): simply allocates and
return an object H, where head[H] = NIL.
Running time 1s O(1)

MAKE-BINOMIAL-HEAP()
1. Create new head node H
2. head[H]€<NIL

3. return H

Delhi Technological
UUUUUUUUUU

Operations on Binomia

BINOMIAL-HEAP-MINIMUM(H)
y < NIL;
x € head[H];
min € oo;
. while x # NIL do
if key[x] < min then
min < key[x];
y € X
x €< sibling[x]
. returny

© PN U R P

Time is O(lg n).

Delhi Technological
UUUUUUUUUU

Linking two binomial trees whose roots have same degree.

y v/
/\ /\ ‘ Link
Bk—l Bk—1

Linking Two Binomial Trees

BINOMIAL-LINK(y,z)

1. plyl €z

2. sibling[y] € child[z];

3. child[z] <v;

4. degree[z] € degree[z] + 1

TR

H.H, ‘ Union ‘ H UH,
H - oAA/\HerA

First, simply merge the two root lists by root degree (like merge sort).

CAA A A/\

Remaining Problem: Can have two trees with the same root degree.

XX
Delhi Technological
IIIIIIIIII

UNION...

Union traverses the new root list like this:

prev-x X next-x

AR EAA

Depending on what x, next-x, and sibling[next-x] point to, Union
links trees with the same root degree.

Note: We may temporarily create three trees with the same root
degree.

00
Delhi Technological
UUUUUUUUUU

UNION...

(15

head[H2]_’@

UNION:Example

UNION:Example...

next-x

head[H]—>@—>‘—>Z—>Q

Delhi Technological
UUUUUUUUUU

UNION:Example...

X next-x

head[H]—»@ »(15)
(3 @ @
@

prev-x

head[H]—2)
(3

UNION:Example...

prev-x X next -X

head[H]4—2—>

UNION:Example...

prev-x next -X

head[H]@
g@ & @

Delhi Technological
UUUUUUUUUU

UNION:Example...

prev-x X next-x
head[H]A(g —(3)
o &
G @
(a9
Case 1
prev-x X next-x = NIL
head[H]—Gz —(3) 6 = terminates
o &
@ @
(a9 Note: Union is

O(lg n).

Code for UNION

12.
13.
14.
15.
16.

19.

21.

2O ®N Uk @ P

17.
18.

20.

22,

BINOMIAL-HEAP-UNION(H,, H,)

H < MAKE-BINOMIAL-HEAP();

head[H] € BINOMIAL-HEAP-MERGE(H,, H,); /¥ simple merge of root lists */

Free the objects H1 and H2, but not the list they point to
if head[H] = NIL

then return H
prev-x < NIL;
x € head[H];
next-x €< sibling[x];
while next-x # NIL

do if (degree[x] # degree[next-x]) or

(sibling[next-x] # NIL and degree[sibling[next-x]] = degree[x])

then prev-x < x;
X € next-x;
else if key[x] < key[next-x]
then sibling[x] € sibling[next-x];
BINOMIAL-LINK(next-x, x)
else if prev-x = NIL
then head[H] € next-x
else sibling[prev-x] €< next-x
BINOMIAL-LINK(x, next-x);
X € next-x
next-x < sibling[x]
return H

Cases1 & 2
Cases1 & 2

Case 3

Case 3
Case 4
Case 4

Case 4
Case 4
Case 4

prev-x next-x sibling[next-x]

Q@G@

B B,
prev-x next-x sibling[next-x]
@ CD © —

B, B, By

prev-x next-x sibling[next-x]

@C})O

Bk Bk Bl
key[x] < key[next[x]]

prev-x next-x sibling[next-x]

@@G@

Bk Bk Bl
key[x] > key[next[x]]

TR

Case 1

=

Case 2

—)

Case 3

—

Case 4

-

prev-x
(@—=(b 0
B B,

prev-x
@— D G

INSERT

Inserts node x into binomial heap H, assuming that node x already

been allocated and key[x] has already been filled.

BINOMIAL-HEAP-INSERT(H, x)

H” €< MAKE-BINOMIAL-HEAP();
p[x] € NIL;

child[x] € NIL;

sibling[x] €< NIL;

degree[x] € 0;

head(H") < x;

H <BINOMIAL-HAP-UNION(H, H")

S o El e Be e =

Time O(Ig n).

parent

key

degree

child [sibling

Delhi Technological
UUUUUUUUUU

INSERT:Example

head[H] —@)
head[H] —@@
(15
'
(a1
head[H] —>@—>@

head[H] —>@

INSERT: Example...

head[H] ﬁ (15
CI7>/
29 @

Extract-Minimum

» Extracts the node with minimum key from binomial
heap H, and returns a pointer to the extracted node

BINOMIAL-HEAP-EXTRACT-MIN(H)

remove minimum key root x from H’s root list;
H’ < Make-B-H();

root list of H” = x’s children in reverse order;
H < Union(H, H");

return x

b b

Time O(lg n).

Delhi Technological
UUUUUUUUUU

Extract-Min: Example

Extract-Min: Example

Decrease-Key

Decreases the key of a node x in a binomial heap H to a
new value k.

BINOMIAL-HEAP-DECREASE-KEY(H, x, k)
if k > key[x]
then error “new key is greater than current key”
key[x] € k;
y <X
z & plyl;
while z = NIL and key[y] < key[z]
do exchange key[y] and key[z];
exchange other satellite fields of y and z
y € z;
z < ply]

2O 0\ OU N

O(lgn)

Delhi Technological
UUUUUUUUUU

Decrease-Key Example

Delhi Technological
UUUUUUUUUU

DELETE a node

BINOMIAL-HEAP-DELETE(H, x)
1. BINOMIAL-HEAP-DECREASE-KEY(H, X, —o0);
5. BINOMIAL-HEAP-EXTRACT-MIN(H)

Time is O(Ilg n)

