Graphs

Topological Sort
Single Source Shortest Path

Manoj Kumar
DTU, Delhi




Directed Acyclic Graph (DA

» A Directed Graph without a cycle.

.

a DAG implies an
ordering on events

In a complex DAG, it
can be hard to find a
schedule that obeys
all the constraints.

Delhi Technological
UUUUUUUUUU



Topological Sort

 For a directed acyclic graph G = (V,E), a topological
sort 1s a linear ordering of all vertices of G such that
if G contains an edge (u,v), then u appears before v in
the ordering.

« A topological sort of a graph can be viewed as an
ordering of its vertices along a horizontal line so that
all directed edges go from left to right.



Topological Sort:Example

DTU

Delhi Technological
UNIVERSITY



Topological sort

» There are often many possible topological sorts of a
given DAG (Directed Acyclic Graph)

 Topological orders for this DAG :

* 1,2,5,4,3,6,7
« 2,1,5,4,7,3,6
* 2,5,1,4,7,3,6
- Etc.

» Each topological order 1s a feasible schedule.

Delhi Technological
UUUUUUUUUU



Topological Sorts for Cyclic Graphs?

Impossible!

» It v and w are two vertices on a cycle, there
exist paths from v to w and from w to v.

» Any ordering will contradict one of these
paths

»
Delhi Technological
UUUUUUUUUU



Topological Sort: Algorithm

TOPOLOGICAL-SORT(G)

1. Call DFS(G) to compute finishing time f/v] for each vertex v.

2. As each vertex 1s finished, insert it onto the front of a linked list.
3. Return the linked list of vertices.

Delhi Technological
UUUUUUUUUU



Topological Sort

11/16

17/18

& = =S m

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

All edges of G are going from left to right only



Strongly Connected Components

 Strongly connected component of a directed graph
G=(V,E) 1s a maximal set of vertices U < V such that
for every pair of vertices u and v in U, we have both
u—v and v—u, that 1s u and v are reachable from
each other.



Strongly Connected Components: Algorithm

STRONGLY-CONNECTED-COMPONENTS(G)

1. Call DFS(G) to compute finishing time f[u] for
each vertex u.

2. Compute G’, transpose of G by reversing all edges.

3. Call DFS(GY), but in the main loop of DFS,
consider the vertices 1n order of decreasing f/u] as
computed 1n line 1.

4. Qutput the vertices of each tree in the depth-first
forest of step 3 as a separate strongly connected
component.



Strongly Connected Components: Example

d (]

12/15 @ 2/7 @’

e f i h
DFS on graph G with 4 SCCs, tree edges are in RED

e ey

DFS on Graph G' (transpose of G) wz




SCC tree

abe

DT

00
Delhi Technological
UNIVERSITY



Articulation Points, bridges, and biconnected graph

» Let G be a connected, undirected graph.

« An articulation point of G 1s a vertex whose removal
disconnects G.

« A bridge of G 1s an edge whose removal disconnects
G.

A graph 1s biconnected if it contains no articulation
point.

* A biconnected component of G 1s a maximal
biconnected subgraph.



Articulation Points, bridges, and biconnected graph

Biconnected Graph

Articulation points

bridge



Single Source Shortest Pat

« Given a weighted directed graph G=(V,E), with
weight function w.:E 2R mapping edges to real
valued weights.

» Weight of path p=<v,,v,,v,,...v,> 1s the sum of the
weights of 1ts constituent edges.

w(p) = Z; W(Vi - 1, Vi)
* We define the shortest path weight from u to v by

c min{w(p): u =)} if there is a path from
o(u,v) = u to .
L otherwise.

@@
Delhi Technological
UUUUUUUUUU




Representing shortest pat

Shortest path tree

» Rooted at source vertex s,

A directed graph G '=(V’,E’), where V'cV and
E’'c E, such that
1. V’is the set of vertices reachable from s in G.
2. G’forms a rooted tree with root s, and

3. For all v € V, the unique simple path from s to vin G
1s a shortest path from s to v in G.

For each vertex v, we store [I[/v] pointing to its
predecessor vertex. For source vertex s, [1[s] =NIL

200
Delhi Technological
IIIIIIIIII




Representing shortest pat

u

3
—4 T[s] = NIL
IT[u] =s
[I[v]=u
II[x] =s

I[y] =x

X y 3(s,s) =0
o(s,u) =3
o(s,v) =9
o(s,x) =5
o(s,y) =11



Relaxation

« Algorithms keep track of d[v], [v]. Initialized as

follows:

INITIALIZE-SINGLE-SOURCE(G, s)
1. foreachv e V/G]/do

2, dfv] € oo; //distance from source
3. mv] € NIL //parent node
4. d[s] €0 // source to source distance =0

» These values are changed when an edge (u, v) 1s

relaxed:
RELAX(u, v, w)
1. ifdfv]>d[u] + w(u,v)then //new path from s to v through u
i1s smaller
2. dlv] €dlu] + w(u, v); //set new path
3. 7qv] €u

TR

Delhi Technological
UUUUUUUUUU



Relaxation

O O

RELAX(u,v) RELAX(u,v)
u v u v
2 2
== OO
dfv] > d[u/+w(u,v) d[v] <= dfu]+w(u,v)



Dijkstra’s Algorithm

T U E W N F

DIJKSTRA(G, w, s)

INITIALIZE-SINGLE-SOURCE(G,s)
S—0
QV
while Q =0
do u < EXTRACT-MIN(Q)

S—S Ufu/}

for each vertex v €Adj[u]

do RELAX(u, v, w)

INITIALIZE-SINGLE-SOURCE(G, s)
1. foreachv e VIG]/do

2, d[v] € oo;

3. v/ € NIL

4. dfs] €0

RELAX(u, v, w)

1. ifdfv] > d[u] + w(u, v) then
2, dfv] €d[u] + w(u, v);
3. Avu] €u

Delhi Technological
UUUUUUUUUU




Dijkstra’s Algorithm

O oI O F W P E

11.

DIJKSTRA(G, w, s)

=)
Q

12.
13.

for eachv € V/G]/ do
d[v] €& os; _ INITIALIZE-
afv] € NIL SINGLE-SOURCE
d[s] €0 B
S—0
QV
while Q =0 // Q is priority queue using minHeap
do u <« EXTRACT-MIN(Q)
S—S vufu}
for each vertex v € Adj[u]

do if dfv] > dfu] + w(u, v)
REILAX

then dfv] €dfu] + w(u, v);
gqu] €u

Delhi Technological
UUUUUUUUUU



Dijkstra: Example

u (V)

I[s] = NIL
I[u] = NIL
I[v] = NIL
I[x] = NIL
I[y] = NIL

Il[s] = NIL
I[u] =s
II[v] = NIL
II[x] =s
II[y] = NIL

Delhi Technological
UUUUUUUUUU



Dijkstra: Example...

u (V)

Il[s] = NIL
I[u] = x
II[v] =x
II[x]=s
Iy] =x

Il[s] = NIL
I[u] = x
IIfv]=y
II[x] =s
Hly] =x

Delhi Technological
UUUUUUUUUU



Dijkstra: Example...

Il[s] = NIL
I[u] =x
II[v]=u
II[x]=s
Iy] =x

Il[s] = NIL
I[u] =x
II[v]=u
II[x] =s
Iy] =x

d(s,s) =0
d(s,u) =8
d(s,v) =9
d(s,x) =5
d(s,y) =7

Delhi Technological
UUUUUUUUUU



Shortest-path tree

Il[s] = NIL
I[u] = x
I[v] =u
II[x] =s
Iy] =x

d(s,s) =0
d(s,u) = 8
d(s,v) =9
d(s,x) =5
d(s,y) =7

Delhi Technological
IIIIIIIIII



