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Directed Acyclic Graph (DAG)

�A Directed Graph without a cycle.

Watch

Socks

Shoes

Undershorts

Pants

2

ShoesPants

Belt Tie

Shirt

Jacket

a DAG implies an
ordering on events

In a complex DAG, it 

can be hard to find a 
schedule that obeys 

all the constraints.



Topological Sort

• For a directed acyclic graph G = (V,E), a topological 

sort is a linear ordering of all vertices  of G such that  

if G contains an edge (u,v), then u appears before v in 

the ordering.

• A topological sort of a graph can be viewed as an 

ordering of its vertices along a horizontal line so that 

all directed edges go from left to right.



Topological Sort:Example
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Topological sort

• There are often many possible topological sorts of a 
given DAG (Directed Acyclic Graph)

• Topological orders for this DAG :

� 1,2,5,4,3,6,7

� 2,1,5,4,7,3,6

1 2

� 2,1,5,4,7,3,6

� 2,5,1,4,7,3,6

� Etc.

• Each topological order is a feasible schedule.
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Topological Sorts for Cyclic Graphs?

Impossible!
1 2

3

� If v and w are two vertices on a cycle, there

exist paths from v to w and from w to v.

� Any ordering will contradict one of these

paths



Topological Sort: Algorithm

TOPOLOGICAL-SORT(G)

1. Call DFS(G) to compute finishing time f[v] for each vertex v.

2. As each vertex is finished, insert it onto the front of a linked list.

3. Return the linked list of vertices.



Topological Sort
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Strongly Connected Components

• Strongly connected component of a directed graph 

G=(V,E) is a maximal set of vertices U ⊆ V such that 

for every pair of vertices u and v in U, we have both  

u     v and v    u, that is u and v are  reachable from 

each other.each other.



Strongly Connected Components: Algorithm

STRONGLY-CONNECTED-COMPONENTS(G)

1. Call DFS(G) to compute finishing time f[u] for 

each vertex u.

2. Compute GT, transpose of G by reversing all edges.

3. Call DFS(GT), but in the main loop of DFS, 3. Call DFS(GT), but in the main loop of DFS, 

consider the vertices in order of decreasing f[u] as 

computed in line 1.

4. Output the vertices of each tree in the depth-first 

forest of step 3 as a separate strongly connected 

component.



Strongly Connected Components: Example
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Articulation Points, bridges, and biconnected graph

• Let G be a connected, undirected graph.

• An articulation point of G is a vertex whose removal 

disconnects G.

• A bridge of G is an edge whose removal disconnects 

G.G.

• A graph is biconnected if it contains no articulation 

point.

• A biconnected component of G is a maximal 

biconnected subgraph.



Biconnected Graph
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Single Source Shortest Path

• Given a weighted directed graph G=(V,E), with 
weight function w:E�R mapping edges to real 
valued weights.

• Weight of path p=<v0,v1,v2,…vk> is the sum of the 
weights of its constituent edges.

w(p) = ∑
k

)v,w(vw(p) = 

• We define the shortest path weight from u to v by

min{w(p): u v)} if there is a path from 

δ(u,v) = u to v. 

∞ otherwise.
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Representing shortest path

Shortest path tree

• Rooted at source vertex s,

• A directed graph  G′ =(V′,E′),   where  V′⊆ V and 

E′⊆ E, such that

1. V′ is the set of vertices reachable from s in G.1. V′ is the set of vertices reachable from s in G.

2. G′ forms a rooted tree with root s, and

3. For all v ϵ V′, the unique simple path from s to v in G

is a shortest path from s to v in G.

For each vertex v,  we store  Π[v] pointing to its 

predecessor vertex. For source vertex s, Π[s] =NIL



Representing shortest path
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Relaxation

• Algorithms keep track of d[v], π[v].  Initialized as 

follows:
INITIALIZE-SINGLE-SOURCE(G, s)
1. for each v ∈ V[G] do
2. d[v]  ∞; //distance from source 
3. π[v]  NIL //parent node
4. d[s]  0 // source to source distance =0

• These values are changed when an edge (u, v) is 

relaxed:

4. d[s]  0 // source to source distance =0

RELAX(u, v, w)
1. if d[v] > d[u] + w(u, v) then    //new path from s to v through u 

is smaller
2. d[v]  d[u] + w(u, v); //set new path
3. π[v]  u



Relaxation
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Dijkstra’s Algorithm

DIJKSTRA(G, w, s)
1.
2.
3.
4.
5.

DIJKSTRA(G, w, s)
1. INITIALIZE-SINGLE-SOURCE(G,s)
2. S←∅
3. Q←V
4. while Q ≠∅
5. do u← EXTRACT-MIN(Q)  

∪

∈

INITIALIZE-SINGLE-SOURCE(G, s)
1. for each v ∈ V[G] do
2. d[v]  ∞;
3. π[v]  NIL
4. d[s]  0

5.
6.
7.
8.

∅

5. do u← EXTRACT-MIN(Q)  
6. S←S ∪ {u}
7. for each vertex v ∈ Adj[u]
8. do RELAX(u, v, w)

RELAX(u, v, w)
1. if d[v] > d[u] + w(u, v) then
2. d[v]  d[u] + w(u, v);
3. π[v]  u



Dijkstra’s Algorithm
DIJKSTRA(G, w, s)
1.
2.
3.
4.
5.
6.
7.

DIJKSTRA(G, w, s)
1. for each v ∈ V[G] do

2. d[v]  ∞; INITIALIZE-
3. π[v]  NIL SINGLE-SOURCE
4. d[s]  0
5. S←∅
6. Q←V
7. while Q ≠∅ // Q is priority queue using minHeap

∪

7.
8.
9.
10.
11.
12.
13.

∅

7. while Q ≠∅ // Q is priority queue using minHeap
8. do u← EXTRACT-MIN(Q)  
9. S←S ∪ {u}
10. for each vertex v ∈ Adj[u]
11. do if d[v] > d[u] + w(u, v)

12. then  d[v]  d[u] + w(u, v); RELAX
13. π[v]  u



Dijkstra: Example
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Dijkstra: Example…
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Dijkstra: Example…
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Π[s] = NIL d(s,s) = 0
Π[u] = x d(s,u) = 8
Π[v] = u d(s,v) = 9
Π[x] = s d(s,x) = 5
Π[y] = x d(s,y) = 7



Shortest-path tree
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