Graphs Topological Sort Single Source Shortest Path

Manoj Kumar DTU, Delhi

Directed Acyclic Graph (DAG)

>A Directed Graph without a cycle.

Topological Sort

- For a directed acyclic graph *G* = (*V*,*E*), a topological sort is a linear ordering of all vertices of *G* such that if *G* contains an edge (*u*,*v*), then *u* appears before v in the ordering.
- A topological sort of a graph can be viewed as an ordering of its vertices along a horizontal line so that all directed edges go from left to right.

Topological Sort:Example

Topological sort

- There are often many possible topological sorts of a given DAG (*Directed Acyclic Graph*)
- Topological orders for this DAG :

• Each topological order is a *feasible schedule*.

Topological Sorts for Cyclic Graphs?

> If v and w are two vertices on a cycle, there exist paths from v to w *and* from w to v.

Any ordering will contradict one of these paths

Topological Sort: Algorithm

TOPOLOGICAL-SORT(G)

- 1. Call DFS(G) to compute finishing time f[v] for each vertex v.
- 2. As each vertex is finished, insert it onto the front of a linked list.
- 3. Return the linked list of vertices.

Topological Sort

All edges of G are going from left to right only

Strongly Connected Components

Strongly connected component of a directed graph G=(V,E) is a maximal set of vertices U ⊆ V such that for every pair of vertices u and v in U, we have both u→v and v→u, that is u and v are reachable from each other.

Strongly Connected Components: Algorithm

STRONGLY-CONNECTED-COMPONENTS(G)

- 1. Call DFS(G) to compute finishing time f[u] for each vertex u.
- 2. Compute G^T , transpose of G by reversing all edges.
- 3. Call DFS(G^T), but in the main loop of DFS, consider the vertices in order of decreasing f[u] as computed in line 1.
- 4. Output the vertices of each tree in the depth-first forest of step 3 as a separate strongly connected component.

Strongly Connected Components: Example

SCC tree

Articulation Points, bridges, and biconnected graph

- Let G be a connected, undirected graph.
- An articulation point of G is a vertex whose removal disconnects G.
- A bridge of G is an edge whose removal disconnects G.
- A graph is biconnected if it contains no articulation point.
- A biconnected component of G is a maximal biconnected subgraph.

Articulation Points, bridges, and biconnected graph

Single Source Shortest Path

- Given a weighted directed graph G=(V,E), with weight function $w:E \rightarrow R$ mapping edges to real valued weights.
- Weight of path $p = \langle v_0, v_1, v_2, \dots, v_k \rangle$ is the sum of the weights of its constituent edges. $w(p) = \sum_{i=1}^{k} W(v_{i-1}, v_i)$
- We define the shortest path weight from *u* to *v* by

$$\delta(u,v) = \begin{cases} \min\{w(p): u \checkmark^{p} v)\} & \text{if there is a path from} \\ u \text{ to } v. \\ \infty & \text{otherwise.} \end{cases}$$

Representing shortest path

Shortest path tree

- Rooted at source vertex s,
- A directed graph G' = (V, E'), where $V \subseteq V$ and $E' \subseteq E$, such that
 - 1. V' is the set of vertices reachable from s in G.
 - 2. G' forms a rooted tree with root s, and
 - 3. For all $v \in V'$, the unique simple path from *s* to *v* in *G* is a shortest path from *s* to *v* in *G*.

For each vertex v, we store $\Pi[v]$ pointing to its predecessor vertex. For source vertex s, $\Pi[s] = \text{NIL}$

Representing shortest path

$\Pi[s] = NIL$
$\Pi[u] = s$
$\Pi[v] = u$
$\Pi[\mathbf{x}] = \mathbf{s}$
$\Pi[\mathbf{y}] = \mathbf{x}$

$$\delta(s,s) = 0$$

$$\delta(s,u) = 3$$

$$\delta(s,v) = 9$$

$$\delta(s,x) = 5$$

$$\delta(s,y) = 11$$

Relaxation

Algorithms keep track of d[v], π[v]. Initialized as follows:

```
INITIALIZE-SINGLE-SOURCE(G, s)
```

- 1. for each $v \in V[G]$ do
- 2. $d[v] \leftarrow \infty$; //distance from source
- 3. $\pi[v] \leftarrow \text{NIL}$ //parent node 4. $d[s] \leftarrow 0$ // source to so
 - //parent noue // source to source distance.
 - // source to source distance =0
- These values are changed when an edge (u, v) is **relaxed**:

Relaxation

d[v] > d[u] + w(u,v)

d[v] <= d[u] + w(u,v)

Dijkstra's Algorithm

DIJKS	$\Gamma RA(G, w, s)$	INITIALIZE-SINGLE-SOURCE(<i>G</i> , <i>s</i>)
1. 2.	INITIALIZE-SINGLE-SOURCE(G,s) $S \leftarrow \emptyset$ $O \leftarrow V$	1. for each $v \in V[G]$ do 2. $d[v] \leftarrow \infty;$ 3. $\pi[v] \leftarrow \text{NIL}$
3. 4. 5.	while $Q \neq \emptyset$ do $u \leftarrow EXTRACT-MIN(Q)$	4. <i>d[s]</i> ← 0
6. 7. 8.	S←S U{u} for each vertex v ∈Adj[u] do RELAX(u, v, w)	RELAX(u, v, w) 1. if $d[v] > d[u] + w(u, v)$ then 2. $d[v] \leftarrow d[u] + w(u, v);$ 3. $\pi[v] \leftarrow u$

Dijkstra's Algorithm

Dijkstra: Example

 $\Pi[s] = NIL$ $\Pi[u] = NIL$ $\Pi[v] = NIL$ $\Pi[x] = NIL$ $\Pi[y] = NIL$

 $\Pi[s] = NIL$ $\Pi[u] = s$ $\Pi[v] = NIL$ $\Pi[x] = s$ $\Pi[y] = NIL$

Dijkstra: Example...

 $\Pi[s] = NIL$ $\Pi[u] = x$ $\Pi[v] = x$ $\Pi[x] = s$ $\Pi[y] = x$

 $\Pi[s] = NIL$ $\Pi[u] = x$ $\Pi[v] = y$ $\Pi[x] = s$ $\Pi[y] = x$

Dijkstra: Example...

 $\Pi[s] = NIL$ $\Pi[u] = x$ $\Pi[v] = u$ $\Pi[x] = s$ $\Pi[y] = x$

$\Pi[s] = NIL$	d(s,s) = 0
$\Pi[u] = x$	$d(s,\!u)=8$
$\Pi[\upsilon] = u$	d(s,v)=9
$\Pi[x] = s$	d(s,x) = 5
$\Pi[y] = x$	d(s,y) = 7

Shortest-path tree

$\Pi[s] = NIL$	d(s,s) = 0
$\Pi[u] = x$	d(s,u) = 8
$\Pi[v] = u$	d(s,v)=9
$\Pi[x] = s$	d(s,x) = 5
$\Pi[y] = x$	d(s,y) = 7

