# Graphs

Manoj Kumar DTU, Delhi





# What is a Graph?

 $\triangleright$  A graph G = (V,E) is composed of:

V: set of vertices

E: set of edges connecting the vertices in V

- $\triangleright$  An edge e = (u,v) is a pair of vertices
- >Example:



$$V = \{a,b,c,d,e\}$$

$$E = \{(a,b),(a,c),(a,d),(b,e),(c,d),(c,e),(d,e)\}$$





# Directed v/s Undirected graphs



- (a) An undirected graph is one in which the pair of vertices in a edge is unordered,  $(v_0, v_1) = (v_1, v_0)$
- (b) A directed graph is one in which each edge is a directed pair of vertices,  $\langle v_0, v_1 \rangle \neq \langle v_1, v_0 \rangle$





# **Graph Representation**



An undirected graph and its adjacency matrix representation.



An undirected graph and its adjacency list representation.





#### **Definitions**

- An undirected graph is *connected* if every pair of vertices is connected by a path.
- A forest is an acyclic graph, and a tree is a connected acyclic graph.
- A graph that has weights associated with each edge is called a *weighted graph*.
- > adjacent vertices: connected by an edge
- degree (of a vertex): # of adjacent vertices.





## **Connected graph**

connected graph: any two vertices are connected by some path







not connected





# **Connected Components**

• The connected components of an undirected graph are the equivalence classes of vertices under the "is reachable from" relation.



• A graph with three connected components: {1, 2, 3,4}; {5, 6, 7}; and {8, 9}.





#### **Trees and Forests**

- A tree is an undirected graph T such that
  - T is connected
  - Thas no cycles
  - This definition of tree is different
  - > from the one of a rooted tree



- >A forest is an undirected graph without cycles
- The connected components of a forest are trees





## **Spanning Trees and Forests**

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest



Graph



Spanning tree





#### **Connectivity**

- $\triangleright$  Let  $\mathbf{n} = \text{#vertices}$ , and  $\mathbf{m} = \text{#edges}$
- ➤ A complete graph: one in which all pairs of vertices are adjacent
- How many total edges in a complete graph?
  - Each of the n vertices is incident to  $\mathbf{n}$ -1 edges, however, we would have counted each edge twice! Therefore, intuitively,  $\mathbf{m} = \mathbf{n}(\mathbf{n} 1)/2$ .
- Therefore, if a graph is not complete, m < n(n-1)/2



$$n = 5$$
  
 $m = (5 * 4)/2 = 10$ 





## Connectivity

**n** = #vertices

$$\mathbf{m} = \text{\#edges}$$

For a tree  $\mathbf{m} = \mathbf{n} - 1$ 



$$\mathbf{n} = 5$$

$$\mathbf{m} = 4$$

If m < n - 1, G is not connected



$$n = 5$$
  
 $m = 3$ 





#### Degree of vertex

➤ Undirected Graph:

Degree of vertex



➤ Directed Graph:

in-degree and out-degree







#### **Breadth First Search (BFS)**

▶ Input: Graph G = (V, E), either directed or undirected, and source vertex  $s \in V$ .

#### **≻Output:**

- $\triangleright d[v]$  = distance (smallest # of edges, or shortest path) from s to v, for all  $v \in V$ .  $d[v] = \infty$  if v is not reachable from s.
- $\triangleright \pi[v] = u$  such that (u, v) is last edge on shortest path s = v.  $\triangleright u$  is v's predecessor.
- ➤ Builds breadth-first tree with root *s* that contains all reachable vertices.





#### **BFS:** some points

- A vertex is "discovered" the first time it is encountered during the search.
- A vertex is "finished" if all vertices adjacent to it have been discovered.
  - Color the vertices to keep track of progress.
    - ➤ White Undiscovered.
    - ➤ Gray Discovered but not finished.
    - ➤ Black Finished.
      - Colors are required only to reason about the algorithm. Can be implemented without colors.





## **BFS: Algorithm**

```
BFS(G,s)
1. for each vertex u in V[G] - \{s\}
             do color[u] \leftarrow white
3
                  d[u] \leftarrow \infty
4
                  \pi[u] \leftarrow \text{nil}
5 \operatorname{color}[s] \leftarrow \operatorname{gray}
6 d[s] \leftarrow 0
7 \pi[s] \leftarrow \text{nil}
8 Q \leftarrow \Phi
9 enqueue(Q,s)
10 while Q \neq \Phi
11
             \mathbf{do} \ \mathbf{u} \leftarrow \mathrm{dequeue}(\mathbf{Q})
12
                             for each v in Adj[u]
13
                                             do if color[v] = white
14
                                                            then color[v] \leftarrow gray
15
                                                                     d[v] \leftarrow d[u] + 1
16
                                                                     \pi[v] \leftarrow u
                                                                     enqueue(Q,v)
17
```

 $color[u] \leftarrow black$ 

white: undiscoveredgray: discoveredblack: finished

Q: a queue of discovered vertices color[v]: color of v d[v]: distance from s to v  $\pi[u]$ : predecessor of v





18



**Q:** s







**Q:** w r







Q: r t x 1 2 2







Q: t x v 2 2 2







**Q:** x v u 2 2 3







**Q:** v u y 2 3 3







**Q:** u y 3 3







**Q:** y 3







Q: Ø







**BF Tree** 





## **BFS:** Analysis

- $\triangleright$  Initialization takes O(V).
- ➤ Traversal Loop
  - After initialization, each vertex is enqueued and dequeued at most once, and each operation takes O(1). So, total time for queuing is O(V).
  - The adjacency list of each vertex is scanned at most once. The sum of lengths of all adjacency lists is  $\Theta(E)$ .
- Summing up over all vertices => total running time of BFS is O(V+E), linear in the size of the adjacency list representation of graph.





#### Depth First Search traversal

- Input: G = (V, E), directed or undirected. No source vertex given!
- Output:
  - 2 timestamps on each vertex. Integers between 1 and 2|V|.
    - d[v] = discovery time (v turns from white to gray)
    - f[v] = finishing time (v turns from gray to black)
  - $\pi[v]$ : predecessor of v = u, such that v was discovered during the scan of u's adjacency list.
- Uses the same coloring scheme for vertices as BFS.





# **DFS: Algorithm**

#### **DFS**(*G*)

- 1. **for** each vertex  $u \in V[G]$
- 2. **do**  $color[u] \leftarrow WHITE$
- 3.  $\pi[u] \leftarrow \text{NIL}$
- 4.  $time \leftarrow 0$
- 5. **for** each vertex  $u \in V[G]$
- 6. **do if** color[u] = WHITE
- 7. **then** DFS-Visit(u)

Uses a global timestamp *time*.

#### DFS-Visit(u)

- 1.  $color[u] \leftarrow GRAY // White vertex u has been discovered$
- 2.  $time \leftarrow time + 1$
- 3.  $d[u] \leftarrow time$
- 4. **for** each  $v \in Adj[u]$
- 5. **do if** color[v] = WHITE
- 6. **then**  $\pi[v] \leftarrow u$
- 7. DFS-Visit(v)
- 8.  $color[u] \leftarrow BLACK$  // Blacken u; it is finished.
- 9.  $f[u] \leftarrow time \leftarrow time + 1$









E)



# Example...





# Example...



(u,v) is Back edge if d(v) < d(u)

(u,v) is tree edge if vertex v is discovered first from vertex u.





## **Properties of DFS**

#### **Property 1**

DFS-VISIT(G, u) visits all the vertices and edges in the connected component of v.

#### **Property 2**

The discovery edges labeled by DFS-VISIT(G, v) form a spanning tree of the connected component of v.

#### **Property 3**

The DFS(G) form a forest of spanning trees of the connected components of G.







## **Analysis of DFS**

- Loops on lines 1-2 & 5-7 take  $\Theta(V)$  time, excluding time to execute DFS-Visit.
- ▶DFS-Visit is called once for each white vertex  $v \in V$  when it's painted gray the first time.
- Lines 4-7 of DFS-Visit is executed |Adj[v]| times. The total cost of executing DFS-Visit is  $\sum_{v \in V} |Adj[v]| = \Theta(E)$
- Total running time of DFS is  $\Theta(V+E)$ .





# DFS on directed Graph

Four type of edges are produces

- 1. Tree edges: are edges (u,v) if v was first discovered by exploring edge (u,v).
- 2. Back edges: are edges (u,v) connecting a vertex u to an ancestor v in DFS tree. Self loops are also called back edges.
- **3. Forward edges:** are non-tree edges (u,v) connecting a vertex u to a descendent v in DFS tree.
- 4. Cross edges: are all other edges. Can go between vertices in the same DFS tree or they can go between vertices in different DFS trees.





# DFS on directed Graph







# Example (DFS)



Consider edge (u,v)







From v, Consider edge (v, y)







From y, Consider edge (y, x)







From x, Consider edge (x, v): do not include in tree







Vertex *x*, no more edges, finish it.







From *y*, no more edges, finish it







From v, no more edges, finish it







From u, consider edge (u,x), do not include







From *u*, no more edges, finish it







DFS from u ends, start again from w







From w ends, Consider (w,y) again from w





























## Classification of edges in DFS tree

Each edge (u,v) can be classified by the color of the vertex v that is reached when edge is first explored.

- 1. WHITE indicates a tree edge.
- 2. GRAY indicates a back edge.
- 3. BLACK indicates a forward edge or cross edge.

In case 3, if d[u] < d[v]: it is a forward edge.

In case 3, if d[u] > d[v]: it is a cross edge





#### **DFS**: Applications

#### **Path Finding:**

- We can specialize the DFS algorithm to find a path between two given vertices *u* and *z* using the template method pattern
- $\triangleright$  We call DFS(G, u) with u as the start vertex
- We use a stack S to keep track of the path between the start vertex and the current vertex
- $\triangleright$  As soon as destination vertex z is encountered, we return the path as the contents of the stack





#### **Path Finding:**

#### Algorithm pathDFS(G, v, z)

- 1. **for each** vertex  $u \in V[G]$
- 2. **do**  $color[u] \leftarrow WHITE$
- 3. Done=FALSE
- 4. pathDFS-VISIT(G,v,z)

#### Algorithm pathDFS-VISIT(G, v, z)

- 1.  $Color[v] \leftarrow GRAY$
- 2. S.push(v)
- 3. If (v = z)
- **4. THEN** Done=TRUE
- 5. return S.elements
- **6.** for each  $u \in Adj[v]$
- 7. **do** if (color[u] = WHITE)
- 8. **THEN** pathDFS(G,u,z)
- 9. **if** (Done) **THEN** return;
- 10. S.pop()
- 11.  $Color[v] \leftarrow BLACK$





# Minimum Spanning Trees





#### **Spanning Trees**

- A *spanning tree* of a graph is a tree and is a subgraph that contains all the vertices.
- A graph may have many spanning trees; for example, the complete graph on four vertices has sixteen spanning trees:





## **Spanning trees**







#### Minimum Spanning Trees (MSTs)

- Suppose that the edges of the graph have weights or lengths. The weight of a tree will be the sum of weights of its edges.
- ➤ Based on the example, we can see that different trees have different lengths.
- The question is: how to find the minimum length spanning tree?
- The question can be solved by many different algorithms, here is two classical minimum-spanning tree algorithms:
  - >Kruskal's Algorithm
  - >Prim's Algorithm





#### **Minimum Spanning Tree**



An undirected graph and its minimum spanning tree





#### **MST: Problem**

- Undirected, connected graph G = (V,E)
- Weight function  $W: E \rightarrow R$  (assigning cost or length or other values to edges)
- Cost/weigth of MST: sum of weights of all edges in MST.
- Problem is to find a Minimum spanning tree: tree that connects all the vertices and having minimum weight.

$$w(T) = \sum_{(u,v)\in T} w(u,v)$$





#### Generic MST Algorithm

```
Generic-MST(G, w)

1 A←Ø // Contains edges that belong to a MST

2 while A does not form a spanning tree do

3 Find an edge (u,v) that is safe for A

4 A←A∪{(u,v)}

5 return A
```

#### Safe edge – edge that does not destroy A's property

The algorithm manages a set of edges A maintaining the following loop invariant

- Prior to each iteration, A is a subset of some minimum spanning tree.
- At each step, an edge is determined that can be added to A without violating this invariant. Such an edge is called a Safe Edge.





#### Kruskal's Algorithm

- Create a forest of trees from the vertices
- ➤ Repeatedly merge trees by adding "safe edges" until only one tree remains
- A "safe edge" is an edge of minimum weight which does not create a cycle





#### Kruskal's Algorithm

- ➤ Edge based algorithm
- Add the edges one at a time, in increasing weight order
- The algorithm maintains A a **forest of trees**. An edge is accepted it if connects vertices of distinct trees
- We need a data structure that maintains a partition, i.e., a collection of disjoint sets
  - ightharpoonup Make-Set(v):  $S \leftarrow \{v\}$
  - $\succ$ Union $(S_i, S_j)$ :  $S \leftarrow S \{S_i, S_j\} \cup \{S_i \cup S_j\}$
  - FindSet(S, x): returns unique  $S_i \in S$ , where  $x \in S_i$





#### Kruskal's Algorithm

The algorithm adds the cheapest edge that connects two trees of the forest

```
MST-Kruskal(G, W)

1 A ← Ø // set of edges forming MST

2 for each vertex v ∈ V[G] do

3 Make-Set(v)

4 sort the edges of E by non-decreasing weight w

5 for each edge (u, v) ∈ E, in order by non-decreasing weight do

6 if Find-Set(u) ≠ Find-Set(v) then

7 A ← A ∪ {(u, v)}

8 Union(u, v) // Union of sets containing u and v

9 return A
```





# Kruskal's algorithm: example









# Kruskal's algorithm: example...









# Kruskal's algorithm: example...









# Kruskal's algorithm: example...







## Kruskal's Algorithm: Running Time

- $\triangleright$  Initialization O(V) time
- Sorting the edges  $\Theta(E \lg E) = \Theta(E \lg V)$  (why?)
- $\triangleright O(E)$  calls to FindSet
- **►**Union costs
  - Let t(v) the number of times v is moved to a new cluster
  - Each time a vertex is moved to a new cluster the size of the cluster containing the vertex at least doubles:  $t(v) \le \log V$
  - Total time spent doing Union  $\sum_{v \in V} t(v) \le |V| \log |V|$
- $\triangleright$  Total time:  $O(E \lg V)$





#### Prim's Algorithm

- > Vertex based algorithm
- ➤ It is a greedy algorithm.
- Start by selecting an arbitrary vertex, include it into the current MST.
- ➤ Grow the current MST by inserting into it the vertex closest to one of the vertices already in current MST.
- >Grows one tree T, one vertex at a time
- ➤ A cloud covering the portion of T already computed
- Label the vertices v outside the cloud with key[v] the minimum weigth of an edge connecting v to a vertex in the cloud,  $key[v] = \infty$ , if no such edge exists





#### Prim's Algorithm

```
MST-Prim(G, w, r)
01 Q \leftarrow V[G] // Q a priority queue - vertices out of T
02 for each u \in O
03 key[u] \leftarrow \infty
04 key[r] \leftarrow 0
05 \pi[r] \leftarrow NIL
06 while O \neq \emptyset do
07 u \leftarrow ExtractMin(Q) // making u part of T
0.8
          for each v \in Adi[u] do
              if v \in Q and w(u, v) < key[v] then
09
10
                  \pi[v] \leftarrow u
11
                 key[v] \leftarrow w(u,v)
```





## Prim's Algorithm: example







## Prim's Algorithm: example...







# Prim's Algorithm: example...





