Manoj Kumar
DTU, Delhi

What is a Graph?

» A graph G = (V,E) is composed of:

V: set of vertices

E: set of edges connecting the vertices in V
»An edge e = (u,v) 1s a pair of vertices
»Example:

V={a,b,c,d,e}

E= {(a,b),(a,c),(a,d), (b,e), (c,d),
(c.e), (d,e)}

(a) An undirected graph is one in which the pair of vertices in a edge is

unordered, (vo, vi) = (V1,Vo)
(b) A directed graph is one in which each edge is a directed pair of

vertices, <Vo, Vi> # <Vi,Vo>

Delhi Technological

W ““““““““““

Graph Representation

0‘0

An undirected graph and its adjacency matrix representation.

.'I"'L=

= @ = - o |
= — =

(L 1

-
-

==~]

[l == [o R e R e

|.:_-:.._|.._|.._|..::.|

[=]

1

-
Ll [

p

-
-

ey

9‘9 j

5

5

-
-

-
a4

P

An undirected graph and its adjacency list representation.

Delhi Technological
UUUUUUUUUU

Definitions

» An undirected graph is connected if every pair of
vertices 1s connected by a path.

» A forest 1s an acyclic graph, and a tree is a connected
acyclic graph.

» A graph that has weights associated with each edge is
called a weighted graph.

»adjacent vertices: connected by an edge

»degree (of a vertex): # of adjacent vertices.

»path: sequence of vertices v,v,,. . .v, such that
consecutive vertices v. and v.,, are adjacent.

X
Delhi Technological
UUUUUUUUUU

Connected graph

»connected graph: any two vertices are connected by
some path

Connected not connected

Connected Components

* The connected components of an undirected graph
are the equivalence classes of vertices under the “1s
reachable from” relation.

« A graph with three connected components: {1, 2,
3,4}, {5,6,7}; and {8, 9}.

Trees and Forests

» A tree is an undirected graph T such that

» T is connected Q M) O
» T has no cycles

» This definition of tree is different (>_<)
> from the one of a rooted tree Tree

» A forest is an undirected graph without cycles
»The connected components of a forest are trees

O
° &

Forest D_T U_

Spanning Trees and Forests

» A spanning tree of a
connected graph 1s a
spanning subgraph that is a
tree

» A spanning tree is not
unique unless the graph is a
tree

»Spanning trees have
applications to the design of
communication networks

» A spanning forest of a graph
1s a spanning subgraph that
1s a forest

TR

Connectivity

» Let n = #vertices, and m = #edges
» A complete graph: one in which all pairs of vertices are
adjacent

» How many total edges in a complete graph?

» Each of the n vertices is incident to n-1 edges, however, we would have
counted each edge twice! Therefore, intuitively, m = n(n -1)/2.

» Therefore, if a graph is not complete, m < n(n -1)/2

n=>5
m=_O x4)/2=10

Connectivity

n = #vertices
m = #edges
>Foratreem=n-1

E:‘a
1 I
o~

Ifm<n-1,Gisnot
connected

Degree of vertex

» Undirected Graph:

Degree of vertex

@ in:1, out: 1
» Directed Graph:
in-degree and out-degree G in: 1, out: 2
in: 1, out: O

Breadth First Search (E

»Input: Graph G = (V, E), either directed or undirected,
and source vertex s € V.

» Output:

»d[v] = distance (smallest # of edges, or shortest path) from s to v,
for all v € V. d[v] = oo 1f v 1s not reachable from s.

» 7{v] = u such that (u, v) is last edge on shortest path s v.
» u is v’s predecessor.

» Builds breadth-first tree with root s that contains all reachable
vertices.

BEFS: some points

» A vertex is “discovered” the first time it is encountered during the
search.

» A vertex 1s “finished” if all vertices adjacent to it have been
discovered.
»Color the vertices to keep track of progress.
» White — Undiscovered.
» Gray — Discovered but not finished.
» Black — Finished.

* Colors are required only to reason about the algorithm. Can be implemented
without colors.

BFS: Algorithm

BES(G.,s) . :

: white: undiscovered
1. for each vertex u in V[G] — {s} .

: gray: discovered

2 do color[u] < white black: finished
3 dlu] ¢« «<
4 nlu] < nil Q: a queue of discovered
5 color[s] < gray vertices
6 d[s]« O color[v]: color of v
7 T7[s] ¢ nil d[v]: distance from s to v
8 Q@ n[u]: predecessor of v
9 enqueue(Q,s)
10 while Q # &
11 do u < dequeue(Q)
12 for each v in Adj[u]
13 do if color[v] = white
14 then color[v] < gray
15 dlv] « d[u] +1
16 Tt[v] < u
17 enqueue(Q,v)
18 color[u] < black P_T H.

BFS: Example

BFS: Example

BFS: Example

Q:r tx

122

Delhi Technological
UUUUUUUUUU

BFS: Example

Q:txv
2 2 2

BFS: Example

Q:xvu
2 2 3

DTU

00
Delhi Technological
UNIVERSITY

BFS: Example

Q:vuy
233

DTU

Delhi Technological
UNIVERSITY

BFS: Example

DTU

Delhi Technological
UNIVERSITY

BFS: Example

DTU

XX
Delhi Technological
UNIVERSITY

BFS: Example

DTU,

Delhi Technological
UNIVERSITY

BFS: Example

BF Tree

BEFS: Analysis

»Initialization takes O(V).
» Traversal Loop

» After initialization, each vertex is enqueued and dequeued at most
once, and each operation takes O(1). So, total time for queuing 1s

o).
» The adjacency list of each vertex is scanned at most once. The
sum of lengths of all adjacency lists 1s GXE).

»Summing up over all vertices => total running time of
BFS 1s O(V+E), linear 1n the size of the adjacency list
representation of graph.

Depth First Search traversa

 Input: G = (V, E), directed or undirected. No source
vertex given!
e Output:

=2 timestamps on each vertex. Integers between 1 and 2IVI.
* d[v] = discovery time (v turns from white to gray)
* f[v] = finishing time (v turns from gray to black)

s 7t[v] : predecessor of v = u, such that v was discovered during the
scan of u’s adjacency list.

« Uses the same coloring scheme for vertices as BFS.

DFS: Algorithm

DFS(G)

1. for each vertex u € V/G]
2. do color[u] < WHITE
3. mt[u] < NIL

4. time < 0

5. for each vertex u € V[G]

6. do if color[u] = WHITE
7. then DFS-Visit(u)

Uses a global timestamp time.

DFS-Visit(u)
1.

N k@D

color[u] < GRAY // White vertex
u has been discovered

time < time + 1
d[u] < time
for each v e Adj[u]
do if color[v] = WHITE
then nt[v] < u
DFS-Visit(v)
color[u] < BLACK // Blacken u;
it is finished.
flu] « time « time + 1

Delhi Technological
UUUUUUUUUU

DFS: Example

@ unexplored vertex 1/

discovered vertex

@ finished vertex 2/ @) (D) (E)
—_—

unexplored edge
discovery edge
— — —» Dbackedge

1/

Example...

1/
1/

3/

3/

Example...

(u,v) is Back edge if
d(v) < d(u)

\ (u,v) is tree edge if

vertex v is discovered first from
vertex u.

Properties of DFS

Property 1
DFS-VISIT(G, u) visits all the vertices and edges in the connected
component of .

Property 2
The discovery edges labeled by DFS-VISIT(G, v) form a spanning tree of
the connected component of v.

Property 3

The DFS(G) form a forest of spanning trees of the connected components
of G.

Analysis of DFS

»Loops on lines 1-2 & 5-7 take O(V) time, excluding
time to execute DFS-Visit.

» DFS-Visit is called once for each white vertex ve V
when it’s painted gray the first time.

»Lines 4-7 of DFS-Visit is executed |Adj[v]l times. The
total cost of executing DFS-Visit is 2. _ IAdj[v]l = O(E)

» Total running time of DFS 1s O(V+E).

DFS on directed Grap

Four type of edges are produces

1.

2.

Tree edges: are edges (u,v) if v was first discovered
by exploring edge (u,v).

Back edges: are edges (u,v) connecting a vertex u
to an ancestor v 1in DFES tree. Self loops are also
called back edges.

Forward edges: are non-tree edges (u,v)
connecting a vertex u to a descendent v in DFS tree.

Cross edges: are all other edges. Can go between
vertices in the same DEFS tree or they can go
between vertices in different DFS trees.

Delhi Technological
UUUUUUUUUU

DFS on directed Grap

DTU

000
Delhi Technological
UNIVERSITY

Example (DFS)

u v w
1/
X y Z

Consider edge (u,v)

Example (DFS)

y Z

From v, Consider edge (v, y)

Example (DFS)

From y, Consider edge (y, x)

Example (DFS)

From x, Consider edge (x, v) :
do not include in tree

Example (DFS)

Vertex x, no more edges, finish it.

Example (DFS)

From y, no more edges, finish it

Example (DFS)

From v, no more edges, finish it

Example (DFS)

From u, consider edge (u,x),
do not include

Example (DFS)

From u, no more edges, finish it

Example (DFS)

DFS from u ends, start again from w

Example (DFS)

From w ends, Consider (w,y) again
from w

Example (DFS)

DT

BEY)
Delhi Technological
UNIVERSITY

Example (DFS)

DT

00
Delhi Technological
UNIVERSITY

Example (DFS)

DTU

00
Delhi Technological
UNIVERSITY

Example (DFS)

DT

Delhi Technological
UNIVERSITY

Classification of edges in DES tree

Each edge (u,v) can be classified by the color of the
vertex v that 1s reached when edge 1s first explored.

1. WHITE indicates a tree edge.

2. GRAY indicates a back edge.

3. BLACK indicates a forward edge or cross edge.
In case 3, 1f d[u] < d[v] : 1t 1s a forward edge.

In case 3, if d[u] > d[v]: it 1s a cross edge

Delhi Technological

IIIIIIIIII

DFS :Applications

Path Finding:

» We can specialize the DFS algorithm to find a path
between two given vertices u and z using the
template method pattern

»We call DFS(G, u) with u as the start vertex

» We use a stack S to keep track of the path between
the start vertex and the current vertex

» As soon as destination vertex z is encountered, we
return the path as the contents of the stack

Path Finding:

Algorithm pathDFS(G, v,)
1.

for each vertex u € V[G]

2. do color[u] € WHITE
3.
4. pathDFS-VISIT(G,v,z)

Done=FALSE

Algorithm pathDFS-VISIT(G, v, 7)
Color[v] € GRAY
S.push(v)
If v=2)
THEN Done=TRUE
return S.elements

for each u € Adj[v]
do if (color[u] = WHITE)

THEN pathDFS(G,u,z)
: if (Done) THEN return;

10. S.pop()
11. Color[v] € BLACK

A AR T A

Delhi Technological
UUUUUUUUUU

Minimum Spanning Trees

DT

000
Delhi Technological
UNIVERSITY

Spanning Trees

* A spanning tree of a graph 1s a tree and 1s a subgraph
that contains all the vertices.

« A graph may have many spanning trees; for example,
the complete graph on four vertices has sixteen
spanning trees:

Spanning trees

DG SR WD
DA LS|

N L L
N Ko oL A

DTU

Delhi Technological
UNIVERSITY

S)

» Suppose that the edges of the graph have weights or
lengths. The weight of a tree will be the sum of
weights of its edges.

»Based on the example, we can see that different trees
have different lengths.

»The question is: how to find the minimum length
spanning tree?

»The question can be solved by many different
algorithms, here 1s two classical minimum-spanning
tree algorithms :

» Kruskal's Algorithm
»Prim's Algorithm

Minimum Spanning Trees (IV

00
Delhi Technological
UUUUUUUUUU

Minimum Spanning Tree

MST: Problem

» Undirected, connected graph G = (V,E)

« Weight function W: E = R (assigning cost or length
or other values to edges)

» Cost/weigth of MST: sum of weights of all edges in
MST.

* Problem 1s to find a Minimum spanning tree: tree that
connects all the vertices and having minimum weight.

w(T') = Z w(u,v)

(u,v)eT

Generic MST Algorithm

Generic—-MST (G, w)

1 A< // contains edges that belong to a MST

2 while A does not form a spanning tree do
3 Find an edge (u,v) that 1s safe for A
4 A—AU{ (u,v) }

5 return A

Safe edge — edge that does not destroy A’s property

The algorithm manages a set of edges A maintaining the following loop

invariant
. Prior to each iteration, A is a subset of some minimum spanning tree.
. At each step, an edge is determined that can be added to A without

violating this invariant. Such an edge is called a Safe Edge.

Delhi Technological
UUUUUUUUUU

Kruskal’s Algorithm

»Create a forest of trees from the vertices

»Repeatedly merge trees by adding “safe edges”
until only one tree remains

> A “safe edge” is an edge of minimum weight
which does not create a cycle

Kruskal's Algorithm

»Edge based algorithm

» Add the edges one at a time, in increasing weight
order

» The algorithm maintains A — a forest of trees. An
edge 1s accepted it if connects vertices of distinct
trees

»We need a data structure that maintains a partition,
1.e.,a collection of disjoint sets
»Make-Set(v): S « {v}
»Union(S;,S): S < §—{S,8;} u {S;U S}
»FindSet(S, x): returns unique S, € S, where x € S,

XX
Delhi Technological
IIIIIIIIII

Kruskal's Algorithm

»The algorithm adds the cheapest edge that connects
two trees of the forest

MST-Kruskal (G, w)

1 A « & /lsetofedges forming MST

2 for each vertex v € V[G] do

3 Make-Set (v)

4 sort the edges of E by non-decreasing weight w

5 for each edge (u,v) € E, 1n order by non-
decreasing weight do

6 if Find-Set(u) # Find-Set(v) then

7 A< A U {(u,v)}

8 Union (u,v) // Union of sets containing u and v

9 return A

TR

Delhi Technological
UUUUUUUUUU

Kruskal’s algorithm: example

Kruskal’s algorithm: example...

Kruskal’s algorithm: example...

Kruskal’s algorithm: example...

Kruskal’s Algorithm: Running Time

»Initialization O(V) time
»Sorting the edges O(E 1g E) = O(E 1g V) (why?)
» O(E) calls to FindSet

» Union costs

»Let t(v) — the number of times v is moved to a new
cluster

»Each time a vertex i1s moved to a new cluster the size of
the cluster containing the vertex at least doubles: #(v) <
log V
»Total time spent doing Union Y_t(v) £|V|log|V]|
>Total time: O(E 1g V) =

BEY]
Delhi Technological
IIIIIIIIII

Prim’s Algorithm

» Vertex based algorithm
»Itis a greedy algorithm.

»Start by selecting an arbitrary vertex, include it
into the current MST.

»Grow the current MST by inserting into it the
vertex closest to one of the vertices already in
current MST.

» Grows one tree T, one vertex at a time
» A cloud covering the portion of T already computed

»Label the vertices v outside the cloud with key[v] —
the minimum weigth of an edge connecting v to a
vertex in the cloud, key[v] = oo, if no such edge exists

X
Delhi Technological
UUUUUUUUUU

Prim’s Algorithm

MST-Prim (G, w, r)

0L Q « V[G] // Q a priority queue - vertices out of T
02 for each u € O

03 key[u] ¢ oo

04 key[r] « 0

05 #[r] ¢« NIL

06 while O # & do

07 u ¢« ExtractMin(Q) // making u part of T

08 for each v € Adj[u] do

09 if v € 0 and w(u,v) < key[v] then
10 T[v] &« u

11 key[v] ¢« w(u,v)

Delhi Technological
UUUUUUUUUU

Prim’s Algorithm: example

e}
()

i

Prim’s Algorithm: example...

Prim’s Algorithm: example...

