
Graphs

Manoj Kumar

DTU, Delhi



What is a Graph?

�A graph G = (V,E) is composed of:

V: set of vertices

E: set of edges connecting the vertices in V

�An edge e = (u,v) is a pair of vertices

�Example:�Example:

a b

c

d e

V= {a,b,c,d,e}

E= {(a,b),(a,c),(a,d), (b,e), (c,d), 

(c,e), (d,e)}



Directed v/s Undirected graphs

(a) An undirected graph is one in which the pair of vertices in a edge is 
unordered, (v0, v1) = (v1,v0) 
(b) A directed graph is one in which each edge is a directed pair of 
vertices, <v0, v1> ≠ <v1,v0>



Graph Representation 

An undirected graph and its adjacency matrix representation.An undirected graph and its adjacency matrix representation.

An undirected graph and its adjacency list representation. 



Definitions

�An undirected graph is connected if every pair of 

vertices is connected by a path. 

�A forest is an acyclic graph, and a tree is a connected 

acyclic graph. 

�A graph that has weights associated with each edge is �A graph that has weights associated with each edge is 

called a weighted graph. 

�adjacent vertices: connected by an edge

�degree (of a vertex): # of adjacent vertices.

�path: sequence of vertices v1,v2,. . .vk such that 

consecutive vertices vi and vi+1 are adjacent.



Connected graph

�connected graph: any two vertices are connected by 

some path

Connected not connected



Connected Components

• The connected components of an undirected graph 

are the equivalence classes of vertices under the “is 

reachable from”  relation.

• A graph with three connected components: {1, 2, 

3,4}; {5, 6, 7}; and {8, 9}.



Trees and Forests

�A tree is an undirected graph T such that
�T is connected

�T has no cycles

�This definition of tree is different 

�from the one of a rooted tree
Tree

�A forest is an undirected graph without cycles

�The connected components of a forest are trees

Forest



Spanning Trees and Forests

�A spanning tree of a 
connected graph is a 
spanning subgraph that is a 
tree

�A spanning tree is not 
unique unless the graph is a Graphunique unless the graph is a 
tree

�Spanning trees have 
applications to the design of 
communication networks

�A spanning forest of a graph 
is a spanning subgraph that 
is a forest

Graph

Spanning tree



Connectivity

�Let n = #vertices, and m = #edges

�A complete graph: one in which all pairs of vertices are 

adjacent

�How many total edges in a complete graph?

�Each of the n vertices is incident to n-1 edges, however, we would have 

counted each edge twice!  Therefore, intuitively, m = n(n -1)/2.counted each edge twice!  Therefore, intuitively, m = n(n -1)/2.

�Therefore, if a graph is not complete, m < n(n -1)/2

n  = 5
m  =  (5 ∗ 4)/2 = 10



Connectivity

n = #vertices

m = #edges

�For a tree m = n - 1 n = 5
m = 4

n = 5
m = 3

If m < n - 1, G is not 

connected



Degree of vertex

�Undirected Graph: 

Degree of vertex

G

0

1 2

3

33

2

2

�Directed Graph: 

in-degree and out-degree

0

1

2

in:1, out: 1

in: 1, out: 2

in: 1, out: 0



Breadth First Search (BFS)

�Input: Graph G = (V, E), either directed or undirected, 
and source vertex s ∈ V.

�Output: 
�d[v] = distance (smallest # of edges, or shortest path) from s to v, 

for all v ∈ V. d[v] = ∞ if v is not reachable from s.

�π[v] = u such that (u, v) is last edge on shortest path s      v.�π[v] = u such that (u, v) is last edge on shortest path s      v.
�u is v’s predecessor.

�Builds breadth-first tree with root s that contains all reachable 
vertices.



BFS: some points

�A vertex is “discovered” the first time it is encountered during the 
search.

�A vertex is “finished” if all vertices adjacent to it have been 
discovered.

�Color the vertices to keep track of progress.
�White – Undiscovered.

�Gray – Discovered but not finished.

�Black – Finished.
� Colors are required only to reason about the algorithm. Can be implemented 

without colors.



BFS: Algorithm
BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u] ← white

3 d[u] ← ∝

4 π[u] ← nil

5 color[s] ← gray

6 d[s] ← 0

7 π[s] ← nil

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u] ← white

3 d[u] ← ∝

4 π[u] ← nil

5 color[s] ← gray

6 d[s] ← 0

7 π[s] ← nil

white: undiscovered
gray: discovered
black: finished

Q: a queue of discovered 
vertices
color[v]: color of v
d[v]: distance from s to v7 π[s] ← nil

8 Q ← Φ

9 enqueue(Q,s)

10while Q ≠ Φ

11 do u ← dequeue(Q)

12 for each v in Adj[u]

13 do if color[v] = white

14 then color[v] ← gray

15 d[v] ← d[u] + 1

16 π[v] ← u

17 enqueue(Q,v)

18 color[u] ← black

7 π[s] ← nil

8 Q ← Φ

9 enqueue(Q,s)

10while Q ≠ Φ

11 do u ← dequeue(Q)

12 for each v in Adj[u]

13 do if color[v] = white

14 then color[v] ← gray

15 d[v] ← d[u] + 1

16 π[v] ← u

17 enqueue(Q,v)

18 color[u] ← black

d[v]: distance from s to v
π[u]: predecessor of v



BFS: Example

∞∞∞∞ 0 ∞∞∞∞ ∞∞∞∞

r s t u

∞∞∞∞ ∞∞∞∞ ∞∞∞∞∞∞∞∞

v w x y

Q: s
0



BFS: Example

1 0 ∞∞∞∞ ∞∞∞∞

r s t u

1 ∞∞∞∞ ∞∞∞∞∞∞∞∞

v w x y

Q: w  r
1  1



BFS: Example

1 0 2 ∞∞∞∞

r s t u

1 2 ∞∞∞∞∞∞∞∞

v w x y

Q: r   t  x
1  2  2



BFS: Example

1 0 2 ∞∞∞∞

r s t u

1 2 ∞∞∞∞2

v w x y

Q: t  x  v
2  2  2



BFS: Example

1 0 2 3

r s t u

1 2 ∞∞∞∞2

v w x y

Q: x  v  u
2  2  3



BFS: Example

1 0 2 3

r s t u

1 2 32

v w x y

Q: v  u  y
2  3  3



BFS: Example

1 0 2 3

r s t u

1 2 32

v w x y

Q: u  y
3  3



BFS: Example

1 0 2 3

r s t u

1 2 32

v w x y

Q: y
3



BFS: Example

1 0 2 3

r s t u

1 2 32

v w x y

Q: ∅



BFS: Example

1 0 2 3

r s t u

1 2 32

v w x y

BF Tree



BFS: Analysis

�Initialization takes O(V).

�Traversal Loop
�After initialization, each vertex is enqueued and dequeued at most 

once, and each operation takes O(1). So, total time for queuing is 
O(V).

�The adjacency list of each vertex is scanned at most once.  The 
Θ

�The adjacency list of each vertex is scanned at most once.  The 
sum of lengths of all adjacency lists is Θ(E).

�Summing up over all vertices => total running time of 
BFS is O(V+E), linear in the size of the adjacency list 
representation of graph. 



Depth First Search traversal

• Input: G = (V, E), directed or undirected. No source 

vertex given!

• Output:

▫ 2 timestamps on each vertex. Integers between 1 and 2|V|.

� d[v] = discovery time (v turns from white to gray)� d[v] = discovery time (v turns from white to gray)

� f [v] = finishing time (v turns from gray to black)

▫ π[v] : predecessor of v = u, such that v was discovered during the 

scan of u’s adjacency list.

• Uses the same coloring scheme for vertices as BFS.



DFS: Algorithm

DFS(G)

1.  for each vertex u ∈ V[G]

2.       do color[u] ← WHITE

3.            π[u] ← NIL

4.  time ← 0

5.  for each vertex u ∈ V[G]

DFS-Visit(u)

1. color[u] ← GRAY  // White vertex 
u has been discovered

2. time← time + 1

3. d[u] ← time

4. for each v ∈ Adj[u]5.  for each vertex u ∈ V[G]

6.        do if color[u] = WHITE

7.                 then DFS-Visit(u)

4. for each v ∈ Adj[u]

5. do if color[v] = WHITE

6. then π[v] ← u

7. DFS-Visit(v)

8. color[u] ← BLACK     // Blacken u;  
it is finished.

9. f[u] ← time ← time + 1

Uses a global timestamp time.



DFS: Example

DB

A

C

E

discovery edge

A discovered vertex

A unexplored vertex

unexplored edge

A finished vertex

1/

2/

DB

A

C

E DB

A

C

E

discovery edge

back edge

1/ 1/

2/

3/

Back 
edge

tree 
edge



Example…

DB

A

C

EDB

A

C

E

1/1/

2/

3/

2/
4/5

DB

A

C

E

C

DB

A

C

E

C

1/1/

2/ 2/

3/

3/3/

3/

4/ 4/5

6/



Example…

DB

A

C

E

1/10

2/9

3/8

4/5

6/7

(u,v) is Back edge  if 
d(v) < d(u)

(u,v) is tree edge if 
vertex v is discovered first from 
vertex u.

3/8



Properties of DFS

Property 1

DFS-VISIT(G, u) visits all the vertices and edges in the connected 
component of v.

Property 2

The discovery edges labeled by DFS-VISIT(G, v) form a spanning tree of 
the connected component of v.

Property 3

The DFS(G) form a forest of spanning trees of the connected components 
of G.

DB

A

C

E



Analysis of DFS

�Loops on lines 1-2 & 5-7 take Θ(V) time, excluding 

time to execute DFS-Visit.

�DFS-Visit is called once for each white vertex v∈V

when it’s painted gray the first time.  when it’s painted gray the first time.  

�Lines 4-7 of DFS-Visit is executed |Adj[v]| times. The 

total cost of executing DFS-Visit is ∑v∈V|Adj[v]| = Θ(E)

�Total running time of DFS is Θ(V+E).



DFS on directed Graph

Four type of edges are produces

1. Tree edges: are edges (u,v) if v was first discovered 

by exploring edge (u,v).

2. Back edges: are edges (u,v) connecting a vertex u 

to an ancestor v in DFS tree. Self loops are also to an ancestor v in DFS tree. Self loops are also 

called back edges.

3. Forward edges: are non-tree edges (u,v) 

connecting a vertex u to a descendent v in DFS tree. 

4. Cross edges: are all other edges. Can go between 

vertices in the same DFS tree or they can go 

between  vertices in different DFS trees.



DFS on directed Graph

1/

u v w

x y z



Example (DFS)

1/ 2/

u v w

x y z

Consider edge (u,v)



Example (DFS)

1/ 2/

u v w

3/

x y z

From v, Consider edge (v, y)



Example (DFS)

1/ 2/

u v w

4/ 3/

x y z

From y, Consider edge (y, x)



Example (DFS)

1/ 2/

u v w

B

4/ 3/

x y z

From x, Consider edge (x, v) : 
do not include in tree



Example (DFS)

1/ 2/

u v w

B

4/5 3/

x y z

Vertex x, no more edges, finish it.



Example (DFS)

1/ 2/

u v w

B

4/5 3/6

x y z

From y, no more edges, finish it



Example (DFS)

1/ 2/7

u v w

B

4/5 3/6

x y z

From v, no more edges, finish it



Example (DFS)

1/ 2/7

u v w

BF

4/5 3/6

x y z

From u, consider edge (u,x), 
do not include



Example (DFS)

1/8 2/7

u v w

BF

4/5 3/6

x y z

From u, no more edges, finish it



Example (DFS)

1/8 2/7 9/

u v w

BF

4/5 3/6

x y z

DFS from u ends, start again from w



Example (DFS)

1/8 2/7 9/

u v w

BF C

4/5 3/6

x y z

From w ends, Consider (w,y) again 
from w



Example (DFS)

1/8 2/7 9/

u v w

BF C

4/5 3/6 10/

x y z



Example (DFS)

1/8 2/7 9/

u v w

BF C

4/5 3/6 10/

x y z

B



Example (DFS)

1/8 2/7 9/

u v w

BF C

4/5 3/6 10/11

x y z

B



Example (DFS)

1/8 2/7 9/12

u v w

BF C

4/5 3/6 10/11

x y z

B



Classification of edges in DFS tree

Each edge (u,v) can be classified by the color of the 

vertex v that is reached when edge is first explored.

1. WHITE indicates a tree edge.

2. GRAY indicates a back edge.

3. BLACK indicates a forward edge or cross edge.3. BLACK indicates a forward edge or cross edge.

In  case 3, if d[u] < d[v] : it is a forward edge.

In case 3, if d[u] > d[v]: it is a cross edge



DFS :Applications

Path Finding:

�We can specialize the DFS algorithm to find a path 
between two given vertices u and z using the 
template method pattern

�We call DFS(G, u) with u as the start vertex

�We use a stack S to keep track of the path between �We use a stack S to keep track of the path between 
the start vertex and the current vertex

�As soon as destination vertex z is encountered, we 
return the path as the contents of the stack 



Path Finding: 
Algorithm pathDFS(G, v, z)

1. for each vertex u ϵ V[G] 

2. do color[u] � WHITE 

3. Done=FALSE

4. pathDFS-VISIT(G,v,z)

Algorithm pathDFS-VISIT(G, v, z)

1. Color[v] � GRAY

2. S.push(v)

3. If (v = z)

4. THEN    Done=TRUE

5. return S.elements

6. for each u ∈ Adj[v]6. for each u ∈ Adj[v]

7. do     if (color[u] = WHITE)

8. THEN  pathDFS(G,u,z)

9. if (Done) THEN return;

10. S.pop()

11. Color[v] � BLACK



Minimum Spanning TreesMinimum Spanning Trees



Spanning Trees

• A spanning tree of a graph is a tree and is a subgraph 

that contains all the vertices. 

• A graph may have many spanning trees; for example, 

the complete graph on four vertices has sixteen 

spanning trees:spanning trees:



Spanning trees



Minimum Spanning Trees (MSTs)

�Suppose that the edges of the graph have weights or 
lengths. The weight of a tree will be the sum of 
weights of its edges. 

�Based on the example, we can see that different trees 
have different lengths. 

�The question is: how to find the minimum length �The question is: how to find the minimum length 
spanning tree?

�The question can be solved by many different 
algorithms, here is two classical minimum-spanning 
tree algorithms :
�Kruskal's Algorithm

�Prim's Algorithm



Minimum Spanning Tree

An undirected graph and its minimum spanning tree



MST: Problem

• Undirected, connected graph G = (V,E)

• Weight function W: E � R (assigning cost or length 

or other values to edges)

• Cost/weigth of MST: sum of weights of all edges in 

MST.MST.

• Problem is to find a Minimum spanning tree: tree that 

connects all the vertices and having minimum weight.

( , )

( ) ( , )
u v T

w T w u v
∈

= ∑



Generic MST Algorithm

Generic-MST(G, w)

1 A←∅    // Contains edges that belong to a MST

2 while A does not form a spanning tree do

3    Find an edge (u,v) that is safe for A 

4 A←A∪{(u,v)}

5 return A  5 return A  

Safe edge – edge that does not destroy A’s property

The algorithm manages a set of edges A maintaining the following loop 

invariant 

• Prior to each iteration, A is a subset of some minimum spanning tree.

• At each step, an edge is determined that can be added to A without 

violating this invariant. Such an edge is called a Safe Edge.



Kruskal’s Algorithm

�Create a forest of trees from the vertices

�Repeatedly merge trees by adding “safe edges” 

until only one tree remains

�A “safe edge” is an edge of minimum weight 

which does not create a cyclewhich does not create a cycle



Kruskal's Algorithm

�Edge based algorithm

�Add the edges one at a time, in increasing weight 
order 

�The algorithm maintains A – a forest of trees. An 
edge is accepted it if connects vertices of distinct 
treestrees

�We need a data structure that maintains a partition, 
i.e.,a collection of disjoint sets
�Make-Set(v): S ← {v}

�Union(Si,Sj): S ← S – {Si,Sj} ∪ {Si ∪ Sj}

�FindSet(S, x): returns unique Si ∈ S, where x ∈ Si



Kruskal's Algorithm

�The algorithm adds the cheapest edge that connects 

two trees of the forest

MST-Kruskal(G,w)

1 A ← ∅ // set of edges forming MST

2 for each vertex v ∈ V[G] do

3 Make-Set(v)3 Make-Set(v)

4 sort the edges of E by non-decreasing weight w

5 for each edge (u,v) ∈ E, in order by non-

decreasing weight do

6 if Find-Set(u) ≠ Find-Set(v) then

7 A ← A ∪ {(u,v)}

8 Union(u,v) // Union of sets containing u and v

9 return A



Kruskal’s algorithm: example



Kruskal’s algorithm: example…



Kruskal’s algorithm: example…



Kruskal’s algorithm: example…



Kruskal’s Algorithm: Running Time

�Initialization O(V) time

�Sorting the edges Θ(E lg E) = Θ(E lg V) (why?)

�O(E) calls to FindSet 

�Union costs

�Let t(v) – the number of times v is moved to a new �Let t(v) – the number of times v is moved to a new 

cluster

�Each time a vertex is moved to a new cluster the size of 

the cluster containing the vertex at least doubles: t(v) ≤ 

log V

�Total time spent doing Union

�Total time: O(E lg V) 

( ) log
v V

t v V V
∈

≤∑



Prim’s Algorithm

�Vertex based algorithm

�It is a greedy algorithm.
�Start by selecting an arbitrary vertex, include it 
into the current MST.

�Grow the current MST by inserting into it the 
vertex closest to one of the vertices already in vertex closest to one of the vertices already in 
current MST.

�Grows one tree T, one vertex at a time

�A cloud covering the portion of T already computed

�Label the vertices v outside the cloud with key[v] –
the minimum weigth of an edge connecting v to a 
vertex in the cloud, key[v] = ∞, if no such edge exists



Prim’s Algorithm

MST-Prim(G,w,r)

01 Q ← V[G] // Q a priority queue – vertices out of T

02 for each u ∈ Q

03 key[u] ← ∞

04 key[r] ← 0

05 π[r] ← NIL

06 while Q ≠ ∅ do06 while Q ≠ ∅ do

07 u ← ExtractMin(Q) // making u part of T

08 for each v ∈ Adj[u] do

09 if v ∈ Q and w(u,v) < key[v] then

10 π[v] ← u

11 key[v] ← w(u,v)



Prim’s Algorithm: example

∞

∞ ∞

∞ ∞

∞

∞0 0

4

8 ∞ ∞

∞∞

∞ ∞ ∞

∞

∞

∞∞

∞

4

8

0

8 7

∞

4∞

2

4

8

8

0



Prim’s Algorithm: example…

7

10

42

2

4

8

8

0

7

10

42

2

4

1

8

0

428 421

0

7

10

42

2

4

1

8

0

7

9

42

2

1

84



Prim’s Algorithm: example…

7

9

42

2

1

84

0

1


