
Analysis of Algorithms

Manoj Kumar

DTU, Delhi

Growth Rate

�The idea is to establish a relative order among
functions for large n

�∃ c , n0 > 0 such that f(N) ≤ c g(N) when N ≥ n0

�f(N) grows no faster than c g(N) for “large” N

Asymptotic notation: Big-Oh

�f(N) = O(g(N))

�There are positive constants c and n0 such that

f(N) ≤ c g(N) when N ≥ n0

�The growth rate of f(N) is less than or equal to the �The growth rate of f(N) is less than or equal to the

growth rate of g(N)

�g(N) is an upper bound on f(N)

Big-Oh: Example

Suppose f(n) = n2 + 3n - 1. We want to show that f(n) = O(n2).

f(n) = n2 + 3n - 1

< n2 + 3n (subtraction makes things smaller so drop it)

<= n2 + 3n2 (since n <= n2 for all integers n)

= 4n2

F(n) = O(n2) since f(n) <= 4n2 for all n >=1 (C=4, n0 = 1)F(n) = O(n) since f(n) <= 4n for all n >=1 (C=4, n0 = 1)

Show:

f(n) = 2n7 - 6n5 + 10n2 – 5 = O(n7)

f(n) < 2n7 + 6n5 + 10n2

<= 2n7 + 6n7 + 10n7

= 18n7

thus, with C = 18 and we have shown that f(n) = O(n7)

Big-Oh: Example
Consider the sorting algorithm shown below. Find the number of instructions executed and the

complexity of this algorithm.

1) for (i = 1; i < n; i++) { n
2) SmallPos = i; n-1
3) Smallest = Array[SmallPos]; n-1
4) for (j = i+1; j <= n; j++) (n-1)*(n-2)/2
5) if (Array[j] < Smallest) { (n-1)*(n-2)/2
6) SmallPos = j; (n-1)*(n-2)/2
7) Smallest = Array[SmallPos] (n-1)*(n-2)/27) Smallest = Array[SmallPos] (n-1)*(n-2)/2

}
8) Array[SmallPos] = Array[i]; n-1
9) Array[i] = Smallest; n-1

}

The total computing time is:

f(n) = (n) + 4(n-1) + 4(n-1)(n-2)/2

= n + 4n - 4 + 2(n2 -3n+2)

= 5n - 4 + 2n2 - 6n + 4

= 5n + 2n2 - 6n

= 2n2 - n

≤ 2n2 for all n≥ 1
= O(n2)

Big-Oh: example

�Let f(N) = 2N2. Then

�f(N) = O(N4)

�f(N) = O(N3)

�f(N) = O(N2) (best answer, asymptotically tight)

�O(N2): reads “order N-squared” or “Big-Oh N-squared”

Big Oh: more examples

�N2 / 2 – 3N = O(N2)

�1 + 4N = O(N)

�7N2 + 10N + 3 = O(N2) = O(N3)

�log10 N = log2 N / log2 10 = O(log2 N) = O(log N)

�sin N = O(1); 10 = O(1), 1010 = O(1)�sin N = O(1); 10 = O(1), 1010 = O(1)

�

�log N + N = O(N)

�logk N = O(N) for any constant k

)(32

1

2
NONNi

N

i
=⋅≤∑ =

)(2

1
NONNi

N

i
=⋅≤∑ =

Big-Omega

�f(N) = Ω(g(N))

�∃ c , n0 > 0 such that f(N) ≥ c g(N) when N ≥ n0

� f(N) grows no slower than c g(N) for “large” N

Big-Omega: examples

�Let f(N) = 2N2. Then

�f(N) = Ω(N)

�f(N) = Ω(N2) (best answer)

Big Theta

� f(N) = Θ(g(N))
�∃ c1,c2 , n0 > 0 such that c1 g(N) ≤ f(N) ≤ c2 g(N) when N ≥ n0

� f(N) grows no slower than c1 g(N) and no faster than c2 g(N)for
“large” N

� the growth rate of f(N) is the same as the growth rate of g(N)

Big Theta

�f(N) = Θ(g(N)) iff

f(N) = O(g(N)) and f(N) = Ω(g(N))

�The growth rate of f(N) equals the growth rate of g(N)

�Example: Let f(N)=N2 , g(N)=2N2�Example: Let f(N)=N , g(N)=2N

�Since f(N) = O(g(N)) and f(N) = Ω(g(N)),

� thus f(N) = Θ(g(N)).

�Big-Theta means the bound is the tightest possible.

Some Rules

�If T(N) is a polynomial of degree k, then

T(N) = Θ(Nk).

�For logarithmic functions,

T(logm N) = Θ(log N).T(logm N) = Θ(log N).

General Rules

�For loops
�at most the running time of the statements inside the

for-loop (including tests) times the number of iterations.

�Nested for loops

for (i=0;i<N; i++)

�the running time of the statement multiplied by the
product of the sizes of all the for-loops.

�O(N2)

for (i=0;i<N; i++)

for (j=0;j<N;j++)

k++;

General Rules
�Consecutive statements

� These just add

for (i=0; i<N; i++)

a[i]=0;

for (i=0; i<N; i++)

for (j=0; j<N; j++)

a[i]=a[i]+ a[j]+ i + j;

� These just add
� O(N) + O(N2) = O(N2)

� IF-ELSE statements

� never more than the running time of the test plus the larger of the running times of S1
and S2.

T(n) = O(max (T1(n), T2(n))

if (cond) then O(1)

S1 T1(n)

else

S2 T2(n)

General Rules

Method calls

A calls B

B calls C

etc.

A sequence of operations when call sequences are flattened

T(n) = max(TA(n), TB(n), TC(n))T(n) = max(TA(n), TB(n), TC(n))

Complexity and Tractability Complexity and Tractability

T(n)

n n n log n n
2

n
3

n
4

n
10 2n

10 .01µs .03µs .1µs 1µs 10µs 10s 1µs
20 .02µs .09µs .4µs 8µs 160µs 2.84h 1ms

30 .03µs .15µs .9µs 27µs 810µs 6.83d 1s

40 .04µs .21µs 1.6µs 64µs 2.56ms 121d 18m

50 .05µs .28µs 2.5µs 125µs 6.25ms 3.1y 13d 50 .05µs .28µs 2.5µs 125µs 6.25ms 3.1y 13d

100 .1µs .66µs 10µs 1ms 100ms 3171y 4×1013y
103 1µs 9.96µs 1ms 1s 16.67m 3.17×1013y 32×10283y

104 10µs 130µs 100ms 16.67m 115.7d 3.17×1023y

105 100µs 1.66ms 10s 11.57d 3171y 3.17×1033y

106 1ms 19.92ms 16.67m 31.71y 3.17×107y 3.17×1043y

Assume the computer does 1 billion ops per sec.

Complexity and Tractability Complexity and Tractability
log n n n log n n

2
n

3 2n

0 1 0 1 1 2
1 2 2 4 8 4
2 4 8 16 64 16
3 8 24 64 512 256
4 16 64 256 4096 65,536
5 32 160 1,024 32,768 4,294,967,2965 32 160 1,024 32,768 4,294,967,296

0

10000

20000

30000

40000

50000

60000

70000

n

1

10

100

1000

10000

100000

n

2n
n2

n log n

n

log n

log n

n

n log n

n2

n3

n3
2n

Analysis of Recursive Algorithms

Recursion
A function is defined recursively if it has the
following two parts

�An anchor or base case
�The function is defined for one or more specific values

of the parameter(s)of the parameter(s)

�An inductive or recursive case
�The function's value for current parameter(s) is defined

in terms of previously defined function values and/or
parameter(s)

Recursion:Example

�Consider a recursive power function
double power (double x, unsigned n)

{ if (n == 0)

return 1.0;

elseelse

return x * power (x, n-1); }

�Which is the anchor?

�Which is the inductive or recursive part?

�How does the anchor keep it from going forever?

�Recurrence T(n) = T(n-1) + O(1)

Recursion Example: Towers of Hanoi

�Recursive algorithm especially appropriate for
solution by recursion

�Task
�Move disks from left peg to right peg

�When disk moved, must be placed on a peg

�Only one disk (top disk on a peg) moved at a time

�Larger disk may never be placed on a smaller disk

Recursion Example: Towers of Hanoi

�Identify base case:

If there is one disk move from A to C

�Inductive solution for n > 1 disks

�Move topmost n – 1 disks from A to B, using C for

temporary storagetemporary storage

�Move final disk remaining on A to C

�Move the n – 1 disk from B to C using A for temporary

storage

�View code for solution,

Recursion Example: Towers of Hanoi

CODE
TowerOfHanoi(int n, char peg1, char peg3, char peg2)

{ // transfer n disks from peg1 to peg 3 using peg2

if (n==1)

printf(“ Move disk from %c to %c\n” , peg1, peg3);

elseelse

{

TowerOfHanoi(n-1, peg1, peg2, peg3);

printf(“Move disk from %c to %c\n”, peg1,peg3);

TowerOfHanoi(n-1, peg2, peg3, peg1);

}

}

Recurrence: T(n) = 2T(n-1) + 1

Tower of Hanoi: Analysis

• Recurrence: T(n) = 2T(n-1) + 1

T(1) = 1

T(2) = 2T(1) + 1 = 2 + 1 = 3

T(3) = 2T(2) + 1 = 2x3 +1 = 7

T(4) = 2T(3) +1 = 2x7 +1 =15 = 24 -1T(4) = 2T(3) +1 = 2x7 +1 =15 = 24 -1

…

T(n) = 2n-1 = O(2n)

Binary Search: Recurrence

BINARY-SEARCH (A, lo, hi, x)
{

if (lo > hi)
return FALSE

mid = (lo+hi)/2 ;
if (x = A[mid])

return TRUE;

constant time: c2

constant time: c1

constant time: c3

24

return TRUE;
if (x < A[mid])

BINARY-SEARCH (A, lo, mid-1, x);
if (x > A[mid])

BINARY-SEARCH (A, mid+1, hi, x);
}

� Recurrence : T(n) = c + T(n/2)

same problem of size n/2

same problem of size n/2

constant time: c3

Solving Recurrences :ITERATION

ITERATION : Example1

T(n) = c + T(n/2)

T(n) = c + T(n/2)

= c + c + T(n/4)

= c + c + c + T(n/8)

T(n/2) = c + T(n/4)

T(n/4) = c + T(n/8)
= c + c + c + T(n/8)

Assume n = 2k

T(n) = c + c + … + c + T(1)

= c lg n + T(1)

= Θ(lg n)

k times

Solving Recurrence: ITERATION

• Example2

T(n) = n + 2T(n/2)

T(n) = n + 2T(n/2)

= n + 2(n/2 + 2T(n/4))

= n + n + 4T(n/4)= n + n + 4T(n/4)

= n + n + 4(n/4 + 2T(n/8))

= n + n + n + 8T(n/8)

… = in + 2iT(n/2i)

= kn + 2kT(1)

= n lg n + nT(1) = Θ(n lg n)

Substitution method

1. Guess the form of the solution.

2. Verify by induction.

3. Solve for constants.

• Apply only when it is easy to guess the form of

answeranswer

Example: T(n) = 4T(n/2) + 100n

�[Assume that T(1) = Θ(1).]

�Guess O(n3) . (Prove O and Ω separately.)

�Assume that T(k) ≤ ck3 for k < n .

�Prove T(n) ≤ cn3 by induction.

Example of substitution

desired – residual

3

))2/((

)2/(

)2/(4

)2/(4)(

100nn3ccn3

100nn3c

100nnc

100nnTnT

−−=

+=

+≤

+=

desired – residual

whenever (c/2)n3 – 100n ≥ 0, for example, if c ≥ 200 and n ≥ 1.

desired

residual

))2/((

cn3

100nn3ccn3

≤

−−=

Example (continued)

• We must also handle the initial conditions, that is,
ground the induction with base cases.

• Base: T(n) = Θ(1) for all n < n0, where n0 is a suitable
constant.

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we pick c big • For 1 ≤ n < n0, we have “Θ(1)” ≤ cn , if we pick c big
enough.

• This bound is not tight!

A tighter upper bound?

• We shall prove that T(n) = O(n2).

• Assume that T(k) ≤ ck2 for k < n:

)2/(4)(100nnTnT

+≤

+=

• for no choice of c > 0. Lose!

100ncn2 +≤

cn2≤

A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.

• Subtract a low-order term.

• Inductive hypothesis: T(k) ≤ c1k
2 – c2k for k < n.

• T(n) =4T(n/2) + 100 n• T(n) =4T(n/2) + 100 n
≤ 4(c1(n/2)2-c2(n/2)) + 100n

= c1n
2 – 2c2 n +100n

=c1n
2 – c2 n – (c2 n – 100 n)

≤ c1n
2 – c2 n if c2 > 100

Pick c1 big enough to handle the initial conditions.

Recursion-tree method

�A recursion tree models the costs (time) of a recursive
execution of an algorithm.

�The recursion tree method is good for generating
guesses for the substitution method.

�The recursion-tree method can be unreliable, just like �The recursion-tree method can be unreliable, just like
any method that uses ellipses (…).

�The recursion-tree method promotes intuition,
however.

Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n2:

(n/4)2 2
16
5 n

2n
n2

(n/2)2

L2.33

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

2
256
25 n

() ()() 1
3

16
52

16
5

16
52

L++++n

…

Total =

= Θ(n2) geometric series

The master method

�The master method applies to recurrences of the form

�T(n) = a T(n/b) + f (n) ,

�where a ≥ 1, b > 1, and f is asymptotically positive.

Master method: Case1

Compare f (n) with nlogba:

1. f (n) = O(nlogba – ε) for some constant ε > 0.

�f (n) grows polynomially slower than nlogba (by an nε

factor).

� Solution: T(n) = Θ(nlogba) .� Solution: T(n) = Θ(nlogba) .

Masters theorem: Case 2

Compare f (n) with nlogba:

2. f (n) = Θ(nlogba lgkn) for some constant k ≥ 0.

• f (n) and nlogba grow at similar rates.

▫ Solution: T(n) = Θ(nlogba lgk+1n) .

Masters theorem: Case 3

Compare f (n) with nlogba:

3. f (n) = Ω(nlogba + ε) for some constant ε > 0.

• f (n) grows polynomially faster than nlogba (by an nε

factor), and f (n) satisfies the regularity condition that
a f (n/b) ≤ c f (n) for some constant c < 1.a f (n/b) ≤ c f (n) for some constant c < 1.

Solution: T(n) = Θ(f (n)) .

Examples

Ex. T(n) = 4T(n/2) + n
a = 4, b = 2 ⇒ nlogba= n2; f (n) = n.

CASE1: f (n) = O(n2 – ε) for ε = 1.
∴ T(n) = Θ(n2).

Ex. T(n) = 4T(n/2) + n2

a = 4, b = 2 ⇒ nlogba= n2; f (n) = n2.

CASE2: f (n) = Θ(n2lg0n), that is, k = 0.
∴ T(n) = Θ(n2lg n).

Example

Ex. T(n) = 4T(n/2) + n3

a = 4, b = 2 ⇒ nlogba= n2; f (n) = n3.

CASE3: f (n) = Ω(n2 + ε) for ε = 1
and 4(cn/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
∴ T(n) = Θ(n3).

L2.39

Ex. T(n) = 4T(n/2) + n2/lg n
a = 4, b = 2 ⇒ nlogba= n2; f (n) = n2/lg n.
Master method does not apply. In particular, for every
constant ε > 0, we have nε = ω(lg n).

Amortized analysis

• An amortized analysis is any strategy for analyzing a

sequence of operations to show that the average cost

per operation is small, even though a single

operation within the sequence might be expensive.

• Amortized analysis differs from average case analysis

in that probability is not involved.

• An amortized analysis guarantees the average

performance of each operation in theworst case.

Types of amortized analysis

• Three common amortization arguments:

▫ The aggregate method,

▫ The accounting method,

▫ The potential method.

The aggregate method

• We show that for all n, if a sequence of n operations

takes worst-case time T(n) in total, then amortized

cost per operation is therefore T(n)/n.

• Example : incrementing a binary counter.

Binary Counter

• Consider a k-bit binary counter that counts upwards from 0.

We use an array A[0..k-1] of bits.

• A binary number stored in the counter has its lowest bit in

A[0] and its highest bit in A[k-1], so that

∑ ⋅= −
=

1
0 2][k

i
i

iAx
• To add 1 to the value in the counter, we use following

procedure

∑ ⋅= =0 2][i iAx

INCREMENT(A)
1. i ← 0
2. while i < length[A] and A[i] = 1
3. do A[i] ← 0 ⊳⊳⊳⊳ reset a bit
4. i ← i + 1
5. if i < length[A]
6. then A[i] ← 1 ⊳⊳⊳⊳ set a bit

Ctr A[4] A[3] A[2] A[1] A[0] Cost

0 0 0 0 0 0 0

1 0 0 0 0 1 1

2 0 0 0 1 0 3

3 0 0 0 1 1 4

4 0 0 1 0 0 7

5 0 0 1 0 1 8

6 0 0 1 1 0 10

7 0 0 1 1 1 117 0 0 1 1 1 11

8 0 1 0 0 0 15

9 0 1 0 0 1 16

10 0 1 0 1 0 18

11 0 1 0 1 1 19

12 0 1 1 0 0 22

13 0 1 1 0 1 23

14 0 1 1 1 0 25

15 0 1 1 1 1 26

16 1 0 0 0 0 31

Worst-case analysis

• Consider a sequence of n increments. The worst-case

time to execute one increment is Θ(k). Therefore, the

worst-case time for n increments is n · Θ(k) = Θ(n⋅ k).

• WRONG! In fact, the worst-case cost for n

increments is only Θ(n) ≪ Θ(n⋅ k).increments is only Θ(n) ≪ Θ(n⋅ k).

• Let’s see why.

Tighter analysis
Ctr A[4] A[3] A[2] A[1] A[0] Cost

0 0 0 0 0 0 0

1 0 0 0 0 1 1

2 0 0 0 1 0 3

3 0 0 0 1 1 4

4 0 0 1 0 0 7

5 0 0 1 0 1 8

6 0 0 1 1 0 10

Total cost of n operations

A[0] flipped every op n

A[1] flipped every 2 ops n/2

A[2] flipped every 4 ops n/22

A[3] flipped every 8 ops n/23

… … … … … 6 0 0 1 1 0 10

7 0 0 1 1 1 11

8 0 1 0 0 0 15

9 0 1 0 0 1 16

10 0 1 0 1 0 18

11 0 1 0 1 1 19

12 0 1 1 0 0 22

13 0 1 1 0 1 23

14 0 1 1 1 0 25

15 0 1 1 1 1 26

16 1 0 0 0 0 31

… … … … …

A[i] flipped every 2i ops n/2i

Tighter analysis…

 

2
2

1

2

1

lg

1

nn

n

i
i

n

i
i

=∑<

∑ 





=

∞

=

=

Cost of n increments

)(

21

n

i
i

Θ=

=

.Thus, the average cost of each increment
operation is Θ(n)/n = Θ(1).

Accounting method

• We assign differing charges to different operations,

with some operations charged more or less than they

actually cost.

• The amount we charge an operation is called

amortized cost. amortized cost.

• When an operation’s amortized cost exceeds its actual

cost, the difference is called credit.

• Credit can be used later to pay for operations whose

amortized cost is less than their actual cost.

A Simple Example: Accounting method

3 ops:

1

1

1

1

1

1

1

1

1

0

1

1

0

0

0

Push(S,x) Pop(S) Multi-pop(S,k)

•Amortized

cost:
2 0 0

•Actual cost: 1 1 min(|S|,k)

1 1 1

Push(S,x) pays for possible later pop of x.

Stack Example: Accounting Method

• When pushing an object, pay $2

• $1 pays for the push

• $1 is prepayment for it being popped by either
pop or Multipop

• Since each object has $1, which is credit, the • Since each object has $1, which is credit, the
credit can never go negative

• Therefore, total amortized cost = O(n), is an
upper bound on total actual cost

Accounting analysis of INCREMENT

• Charge an amortized cost of $2 every time a bit is set

from 0 to 1

• $1 pays for the actual bit setting.

• $1 is stored for later re-setting (from 1 to 0).

• At any point, every 1 bit in the counter has $1 on it… • At any point, every 1 bit in the counter has $1 on it…

that pays for resetting it. (reset is “free”)

Example:

0 0 0 1$1 0 1$1 0

0 0 0 1$1 0 1$1 1$1

0 0 0 1$1 1$1 0 0

Cost = $2

Cost = $2

Incrementing a Binary Counter
INCREMENT(A)
1. i ← 0
2. while i < length[A] and A[i] = 1
3. do A[i] ← 0 ⊳⊳⊳⊳ reset a bit
4. i ← i + 1
5. if i < length[A]
6. then A[i] ← 1 ⊳⊳⊳⊳ set a bit

• When Incrementing,
▫ Amortized cost for line 3 = $0

▫ Amortized cost for line 6 = $2

• Amortized cost for INCREMENT(A) = $2

• Amortized cost for n INCREMENT(A) = $2n =O(n)

The potential method

• Represent prepaid work as “potential energy” or

“potential”, that can be released to pay for future

operations.

• Potential is associated with the data structure as a

whole, rather than with specific object within the data whole, rather than with specific object within the data

structure.

The potential method

• Start with an initial data structure D0.

• Operation i transforms Di–1 to Di.

• The actual cost of operation i is ci.

• Define a potential function Φ : {Di} → R,
such that Φ(D0) = 0 and Φ(Di) ≥ 0 for all i. such that Φ(D0) = 0 and Φ(Di) ≥ 0 for all i.

• The amortized cost ĉi with respect to Φ is defined to

be ĉi = ci + Φ(Di) – Φ(Di–1).

i.e. Amortized cost = actual cost + increase in potential

due to operation.

Understanding potential

ĉi = ci + Φ(Di) – Φ(Di–1)

potential difference ∆Φi

• If ∆Φ > 0, then ĉ > c . Operation i stores • If ∆Φi > 0, then ĉi > ci. Operation i stores
work in the data structure for later use.

• If ∆Φi < 0, then ĉi < ci. The data structure
delivers up stored work to help pay for
operation i.

Amortized costs bound the true costs

The total amortized cost of n operations is

()∑∑
=

−
=

Φ−Φ+=

n

n

i

iii

n

i

i DDcc
1

1
1

)()(ˆ

∑

∑

=

=

≥

Φ−Φ+=

n

i

i

n

n

i

i

c

DDc

1

0
1

)()(

since Φ(Dn) ≥ 0 and
Φ(D0) = 0.

Stack Example: Potential

Define: φ(Di) = #items in stack Thus, φ(D0)=0.

Plug in for operations:
Push: ĉi = ci + φφφφ(Di) - φφφφ(Di-1)

= 1 + j - (j-1)= 1 + j - (j-1)

= 2

Pop: ĉi = ci + φφφφ(Di) - φφφφ(Di-1)

= 1 + (j-1) - j

= 0

Multi-pop: ĉi = ci + φφφφ(Di) - φφφφ(Di-1)

= k’ + (j-k’) - j k’=min(|S|,k)

= 0

Potential analysis of INCREMENT

Define the potential of the counter after the ith

operation by Φ(Di) = bi, the number of 1’s in the
counter after the ith operation.

Note:
• Φ(D) = 0,• Φ(D0) = 0,
• Φ(Di) ≥ 0 for all i.

Example:

Φ = 20 0 0 1 0 1 0

0 0 0 1$1 0 1$1 0 Accounting method)(

Potential analysis of INCREMENT

The amortized cost of the i th INCREMENT is

Assume ith INCREMENT resets ti bits (in line 3).
Actual cost ci = (ti + 1)
Number of 1’s after ith operation: bi = bi–1 – ti + 1

ĉi = ci + Φ(Di) – Φ(Di–1)
= (ti + 1) + bi - bi–1
= (ti + 1) + (1 − ti)
= 2

Therefore, n INCREMENTs cost Θ(n) in the worst case.

Disjoint Sets

Manoj Kumar

DTU, Delhi

Disjoint Sets

�A disjoint set data structure maintains a collection

S={S1, S2, …, Sk} of disjoint dynamic sets.

�Each set is identified by a representative, which is

some member of the set.

�Supports following operations:�Supports following operations:

�MAKE_SET(x): creates a new set whose only

member is pointed by x.

�UNION(x,y): unite the dynamic sets that contains x

and y, say Sx and Sy.

�FIND_SET(x): returns a pointer to the representative

of the set containing x.

Linked-List Implementation

• Each set as a linked-list, with head and tail, and each

node contains value, next node pointer and back-to-

representative pointer.

Pointer to
representative node

c h e

Set S1={c,h,e}

representative node

Value

Pointer to other
member

Node structure

Linked-List for two sets

S1 c h e

Set S1={c,h,e}

f gS2
Set S2={f, g}

UNION of
two Sets
S=S1 U S2

f cgS h e

Analysis

�MAKE_SET(x) takes O(1) time: create a new linked

list whose only object is x.

e

�FIND_SET(x) takes O(1) time: return the pointer

from x back to the representative.

f cgS h e

Union

�A simple implementation: UNION(x,y) just appends x to the
end of y, updates all back-to-representative pointers in x to the
head of y.

�Each UNION takes time linear in the x’s length.

Union: amortized cost
�Consider sequence of m operations. m=n+q

where q=n-1

�Let we have objects x1, x2, … xn.

�We execute n MAKE-SET(xi) operations (O(1) each) followed by
q= n-1 UNION

� UNION(x1, x2), O(1),

� UNION(x , x), O(2),� UNION(x2, x3), O(2),

� …..

� UNION(xn-1, xn), O(n-1) =O(q)

�The UNIONs cost 1+2+…+q=Θ(q2)

�So total time spent is Θ(n + q2), which is Θ(m2), since n = Θ(m),
and q = Θ(m).

�Thus on average, each operation require Θ(m2)/m = Θ(m) time, that
is the amortized time of one operation.

Weighted Union

• If we are appending longer list onto a shorter list; we

must update the pointer to the representative for each

member of the longer list.

• Suppose each representative node also stores length

of list. This can be easily maintained.of list. This can be easily maintained.

• Weighted Union: we always append smaller list onto

the longer list, with ties broken arbitrarily.

Weighted Union: analysis

�Result: a sequence of m MAKE-SET, UNION, FIND-SET
operations, n of which are MAKE-SET operations, the running
time is O(m+nlg n). Why???

�Count the number of updates to back-to-representative pointer
for any x in a set of n elements. Consider that each time, the
UNION will at least double the length of united set, it will UNION will at least double the length of united set, it will
take at most lg n UNIONS to unite n elements. So each x’s
back-to-representative pointer can be updated at most lg n
times. There are n objects so all Union operations taking n lg n
time.

�The UNION operation can stil take Ω(m) time if both sets
have m elements.

Disjoint-Set Implementation: Forests

• Rooted trees, each tree is a set, root is the

representative. Each node points to its parent. Root

points to itself.

cf

d

Set {c,h,e} Set {f,d}
UNION

h e

cc cf

d

h e

cc

Straightforward Solution

�Three operations
�MAKE-SET(x): create a tree containing x. O(1)

�FIND-SET(x): follow the chain of parent pointers until to

the root. O(height of x’s tree)

�UNION(x,y): let the root of one tree point to the root of the

other. O(1)other. O(1)

�It is possible that n-1 UNIONs results in a tree of

height n-1. (just a linear chain of n nodes).

�So n FIND-SET operations will cost O(n2).

Union by Rank

�Union by Rank: Each node is associated with a rank,

which is the upper bound on the height of the node

(i.e., the height of subtree rooted at the node), then

when UNION, let the root with smaller rank point to

the root with larger rank. the root with larger rank.

cf

d

h e

cc b g

ca cf

d

h e

cc

b g

ca

Path Compression

�Path Compression: used in FIND-SET(x) operation,

make each node in the path from x to the root

directly point to the root. Thus reduce the tree height.

cf
cf

dh

e

cc

b g

ca

cf

d

h e

cc

b g

ca

FIND-SET(j)
j

j

Path Compression

f

e

d

f

edc

c

Algorithm for Disjoint-Set Forest

MAKE-SET(x)
1. p[x]←x
2. rank[x]←0

LINK(x,y) FIND-SET(x)

UNION(x,y)
1. LINK(FIND-SET(x),FIND-SET(y))

LINK(x,y)
1. if rank[x]>rank[y]
2. then p[y] ←x
3. else p[x] ←y
4. if rank[x]=rank[y]
5. then rank[y]++

FIND-SET(x)
1. if x≠ p[x]
2. then p[x] ←FIND-SET(p[x])
3. return p[x]

Running time

• Total m operations.

• n MAKE-SET,

• At most n-1 UNION, and

• f FIND-SET operations

• If we use only Union by Rank, Worst case running time• If we use only Union by Rank, Worst case running time

▫ Θ(n + f log(1+f/n) n) if f ≥ n,

▫ Θ(n + f lg n) if f < n.

• If we use both Union by Rank and path compression,

Worst case running time is O(mα(m,n)) where α(m,n) is

inverse of Ackermann’s function.

• α(m,n) ≤ 4 � O(m) running time � O(m)/m =O(1) per

operation.

