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Growth Rate

�The idea is to establish a relative order among 
functions for large n

�∃ c , n0 > 0 such that  f(N) ≤ c g(N) when N ≥ n0

�f(N) grows no faster than c g(N) for “large” N



Asymptotic notation: Big-Oh

�f(N) = O(g(N))

�There are positive constants c and n0 such that 

f(N) ≤ c g(N) when N ≥ n0

�The growth rate of f(N) is less than or equal to the �The growth rate of f(N) is less than or equal to the 

growth rate of g(N)

�g(N) is an upper bound on f(N)



Big-Oh: Example

Suppose f(n) = n2 + 3n - 1.  We want to show that f(n) = O(n2).

f(n) = n2 + 3n - 1

< n2 + 3n     (subtraction makes things smaller so drop it)

<= n2 + 3n2 (since n <= n2 for all integers n)

= 4n2

F(n) = O(n2)  since  f(n) <= 4n2 for all n >=1   (C=4, n0 = 1)F(n) = O(n )  since  f(n) <= 4n for all n >=1   (C=4, n0 = 1)

Show: 

f(n) = 2n7 - 6n5 + 10n2 – 5 = O(n7)

f(n) < 2n7 + 6n5 + 10n2

<= 2n7 + 6n7 + 10n7

= 18n7

thus, with C = 18 and we have shown that f(n) = O(n7)



Big-Oh: Example
Consider the sorting algorithm shown below.  Find the number of instructions executed and the 

complexity of this algorithm.

1) for (i = 1; i < n; i++) { n
2) SmallPos = i; n-1
3) Smallest = Array[SmallPos]; n-1
4) for (j = i+1; j <= n; j++)   (n-1)*(n-2)/2
5) if (Array[j] < Smallest) { (n-1)*(n-2)/2
6) SmallPos = j; (n-1)*(n-2)/2
7) Smallest  = Array[SmallPos] (n-1)*(n-2)/27) Smallest  = Array[SmallPos] (n-1)*(n-2)/2

}
8) Array[SmallPos] = Array[i]; n-1
9)    Array[i] = Smallest; n-1

}

The total computing time is:  

f(n) = (n) + 4(n-1) + 4(n-1)(n-2)/2 

= n  + 4n - 4 + 2(n2 -3n+2)

= 5n - 4 + 2n2 - 6n + 4 

= 5n + 2n2 - 6n

= 2n2 - n  

≤ 2n2 for all n≥ 1
= O(n2)



Big-Oh: example

�Let f(N) = 2N2.  Then

�f(N) = O(N4)

�f(N) = O(N3)

�f(N) = O(N2) (best answer, asymptotically tight)

�O(N2): reads “order N-squared” or “Big-Oh N-squared”



Big Oh: more examples

�N2 / 2 – 3N = O(N2)

�1 + 4N = O(N)

�7N2 + 10N + 3 = O(N2) = O(N3)

�log10 N = log2 N / log2 10 = O(log2 N) = O(log N)

�sin N = O(1);  10 = O(1), 1010 = O(1)�sin N = O(1);  10 = O(1), 1010 = O(1)

�

�log N + N = O(N)

�logk N = O(N) for any constant k
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Big-Omega

�f(N) = Ω(g(N))

�∃ c , n0 > 0 such that f(N) ≥ c g(N) when N ≥ n0

� f(N) grows no slower than c g(N) for “large” N



Big-Omega: examples

�Let f(N) = 2N2.  Then

�f(N) = Ω(N)

�f(N) = Ω(N2) (best answer)



Big Theta

� f(N) = Θ(g(N))
�∃ c1,c2 , n0 > 0 such that c1 g(N) ≤ f(N) ≤  c2 g(N) when N ≥ n0

� f(N) grows no slower than c1 g(N) and no faster than c2 g(N)for 
“large” N

� the growth rate of f(N) is the same as the growth rate of g(N)



Big Theta

�f(N) = Θ(g(N)) iff

f(N) = O(g(N)) and f(N) = Ω(g(N))

�The growth rate of f(N) equals the growth rate of g(N)

�Example: Let  f(N)=N2 ,  g(N)=2N2�Example: Let  f(N)=N ,  g(N)=2N

�Since f(N) = O(g(N)) and f(N) = Ω(g(N)), 

� thus f(N) = Θ(g(N)).

�Big-Theta means the bound is the tightest possible. 



Some Rules

�If T(N) is a polynomial of degree k, then 

T(N) = Θ(Nk).

�For logarithmic functions,

T(logm N) = Θ(log N).T(logm N) = Θ(log N).



General Rules

�For loops
�at most the running time of the statements inside the 

for-loop (including tests) times the number of iterations.

�Nested for loops

for (i=0;i<N; i++)

�the running time of the statement multiplied by the 
product of the sizes of all the for-loops.

�O(N2)

for (i=0;i<N; i++)

for (j=0;j<N;j++)

k++;



General Rules
�Consecutive statements

� These just add

for (i=0; i<N; i++)

a[i]=0;

for (i=0; i<N; i++)

for (j=0; j<N; j++)

a[i]=a[i]+ a[j]+ i + j;

� These just add
� O(N) + O(N2) = O(N2)

� IF-ELSE statements

� never more than the running time of the test plus the larger of the running times of S1 
and S2.

T(n) = O(max (T1(n), T2(n))

if (cond) then         O(1)

S1 T1(n)

else

S2 T2(n)



General Rules

Method calls

A calls B

B calls C

etc.

A sequence of operations when call sequences are flattened

T(n) = max(TA(n), TB(n), TC(n))T(n) = max(TA(n), TB(n), TC(n))



Complexity and Tractability Complexity and Tractability 

T(n) 

n n n log n n
2 

n
3 

n
4 

n
10 2n 

10 .01µs .03µs .1µs 1µs 10µs 10s 1µs 
20 .02µs .09µs .4µs 8µs 160µs 2.84h 1ms 

30 .03µs .15µs .9µs 27µs 810µs 6.83d 1s 

40 .04µs .21µs 1.6µs 64µs 2.56ms 121d 18m 

50 .05µs .28µs 2.5µs 125µs 6.25ms 3.1y 13d 50 .05µs .28µs 2.5µs 125µs 6.25ms 3.1y 13d 

100 .1µs .66µs 10µs 1ms 100ms 3171y 4×1013y 
103 1µs 9.96µs 1ms 1s 16.67m 3.17×1013y 32×10283y 

104 10µs 130µs 100ms 16.67m 115.7d 3.17×1023y  

105 100µs 1.66ms 10s 11.57d 3171y 3.17×1033y  

106 1ms 19.92ms 16.67m 31.71y 3.17×107y 3.17×1043y  
 

 

Assume the computer does 1 billion ops per sec.



Complexity and Tractability Complexity and Tractability 
log n n n log n n

2
n

3 2n

0 1 0 1 1 2
1 2 2 4 8 4
2 4 8 16 64 16
3 8 24 64 512 256
4 16 64 256 4096 65,536
5 32 160 1,024 32,768 4,294,967,2965 32 160 1,024 32,768 4,294,967,296
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Analysis of Recursive Algorithms

Recursion
A function is defined recursively if it has the 
following two parts

�An anchor or base case
�The function is defined for one or more specific values 

of the parameter(s)of the parameter(s)

�An inductive or recursive case
�The function's value for current parameter(s) is defined 

in terms of previously defined function values and/or 
parameter(s)



Recursion:Example

�Consider a recursive power function
double power (double x, unsigned n)

{  if  ( n == 0 )

return 1.0;

elseelse

return x * power (x, n-1);  }

�Which is the anchor?

�Which is the inductive or recursive part?

�How does the anchor keep it from going forever?

�Recurrence  T(n) = T(n-1) + O(1) 



Recursion Example: Towers of Hanoi

�Recursive algorithm especially appropriate for 
solution by recursion

�Task
�Move disks from left peg to right peg 

�When disk moved, must be placed on a peg

�Only one disk (top disk on a peg) moved at a time

�Larger disk may never be placed on a smaller disk



Recursion Example: Towers of Hanoi

�Identify base case:

If there is one disk move from A to C

�Inductive solution for n > 1 disks

�Move topmost n – 1 disks from A to B, using C for 

temporary storagetemporary storage

�Move final disk remaining on A to C

�Move the n – 1 disk from B to C using A for temporary 

storage

�View code for solution,



Recursion Example: Towers of Hanoi

CODE
TowerOfHanoi(int n, char peg1, char peg3, char peg2)

{ // transfer n disks from peg1 to peg 3 using peg2

if ( n==1)

printf(“ Move disk from %c to %c\n” , peg1, peg3);

elseelse

{

TowerOfHanoi(n-1, peg1, peg2, peg3);

printf(“Move disk from %c to %c\n”, peg1,peg3);

TowerOfHanoi(n-1, peg2, peg3, peg1);

}

}

Recurrence:   T(n) = 2T(n-1) + 1



Tower of Hanoi: Analysis

• Recurrence:   T(n) = 2T(n-1) + 1

T(1) = 1

T(2) = 2T(1) + 1 = 2 + 1 = 3

T(3) = 2T(2) + 1 = 2x3 +1 = 7

T(4) = 2T(3) +1 = 2x7 +1 =15 = 24 -1T(4) = 2T(3) +1 = 2x7 +1 =15 = 24 -1

…

T(n) = 2n-1 = O(2n)



Binary Search: Recurrence

BINARY-SEARCH (A, lo, hi, x)
{

if (lo > hi)
return FALSE

mid = (lo+hi)/2 ;
if (x = A[mid])

return TRUE;

constant time: c2

constant time: c1

constant time: c3

24

return TRUE;
if ( x < A[mid] )

BINARY-SEARCH (A, lo, mid-1, x);
if ( x > A[mid] )

BINARY-SEARCH (A, mid+1, hi, x);
}

� Recurrence :  T(n) = c + T(n/2)

same problem of size n/2

same problem of size n/2

constant time: c3



Solving Recurrences :ITERATION

ITERATION  : Example1

T(n) = c + T(n/2)

T(n) = c + T(n/2)

= c + c + T(n/4)

= c + c + c + T(n/8)

T(n/2) = c + T(n/4)

T(n/4) = c + T(n/8)
= c + c + c + T(n/8)

Assume n = 2k

T(n) = c + c + … + c + T(1) 

= c lg n + T(1)

= Θ(lg n)

k times



Solving Recurrence: ITERATION

• Example2

T(n) = n + 2T(n/2)

T(n) = n + 2T(n/2) 

= n + 2(n/2 + 2T(n/4)) 

= n + n + 4T(n/4)= n + n + 4T(n/4)

= n + n + 4(n/4 + 2T(n/8))

= n + n + n + 8T(n/8)

…  = in + 2iT(n/2i)

= kn + 2kT(1) 

= n lg n + nT(1) = Θ(n lg n)



Substitution method

1. Guess the form of the solution.

2. Verify by induction.

3. Solve for constants.

• Apply only when it is easy to guess the form of 

answeranswer

Example: T(n) = 4T(n/2) + 100n

�[Assume that T(1) = Θ(1).]

�Guess O(n3) .  (Prove O and Ω separately.)

�Assume that T(k) ≤ ck3 for k < n .

�Prove T(n) ≤ cn3 by induction.



Example of substitution

desired – residual

3

))2/((

)2/(

)2/(4

)2/(4)(

100nn3ccn3

100nn3c

100nnc

100nnTnT

−−=

+=

+≤

+=

desired – residual

whenever  (c/2)n3 – 100n ≥ 0, for example, if c ≥ 200 and n ≥ 1.

desired

residual

))2/((

cn3

100nn3ccn3

≤

−−=



Example (continued)

• We must also handle the initial conditions, that is, 
ground the induction with base cases.

• Base: T(n) = Θ(1) for all n < n0, where n0 is a suitable 
constant.

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we pick c big • For 1 ≤ n < n0, we have “Θ(1)” ≤ cn , if we pick c big 
enough.

• This bound is not tight!



A tighter upper bound?

• We shall prove that T(n) = O(n2).

• Assume that T(k) ≤ ck2 for k < n:

)2/(4)( 100nnTnT

+≤

+=

• for no choice of c > 0.  Lose!

100ncn2 +≤

cn2≤



A tighter upper bound!

IDEA:  Strengthen the inductive hypothesis.

• Subtract a low-order term.

• Inductive hypothesis: T(k) ≤ c1k
2 – c2k for k < n.

• T(n) =4T(n/2) + 100 n• T(n) =4T(n/2) + 100 n
≤ 4(c1(n/2)2-c2(n/2)) + 100n

= c1n
2 – 2c2 n +100n

=c1n
2 – c2 n – ( c2 n – 100 n)

≤ c1n
2 – c2 n   if c2 > 100

Pick c1 big enough to handle the initial conditions.



Recursion-tree method

�A recursion tree models the costs (time) of a recursive 
execution of an algorithm.

�The recursion tree method is good for generating 
guesses for the substitution method.

�The recursion-tree method can be unreliable, just like �The recursion-tree method can be unreliable, just like 
any method that uses ellipses (…).

�The recursion-tree method promotes intuition, 
however.



Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n2:

(n/4)2 2
16
5 n

2n
n2

(n/2)2

L2.33

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

2
256
25 n

( ) ( )( ) 1
3

16
52

16
5

16
52

L++++n

…

Total  =

= Θ(n2) geometric series



The master method

�The master method applies to recurrences of the form

�T(n) = a T(n/b) + f (n) , 

�where a ≥ 1, b > 1, and f is asymptotically positive.



Master method: Case1

Compare f (n) with nlogba:

1. f (n) = O(nlogba – ε) for some constant ε > 0.

�f (n) grows polynomially slower than nlogba (by an nε

factor).

� Solution: T(n) = Θ(nlogba) .� Solution: T(n) = Θ(nlogba) .



Masters theorem: Case 2

Compare f (n) with nlogba:

2. f (n) = Θ(nlogba lgkn) for some constant k ≥ 0.

• f (n) and nlogba grow at similar rates.

▫ Solution: T(n) = Θ(nlogba lgk+1n) .



Masters theorem: Case 3

Compare f (n) with nlogba:

3. f (n) = Ω(nlogba + ε) for some constant ε > 0.

• f (n) grows polynomially faster than nlogba (by an nε

factor), and f (n) satisfies the regularity condition that 
a f (n/b) ≤ c f (n) for some constant c < 1.a f (n/b) ≤ c f (n) for some constant c < 1.

Solution: T(n) = Θ( f (n)) .



Examples

Ex. T(n) = 4T(n/2) + n
a = 4, b = 2 ⇒ nlogba= n2; f (n) = n.

CASE1: f (n) = O(n2 – ε) for ε = 1.
∴ T(n) = Θ(n2).

Ex. T(n) = 4T(n/2) + n2

a = 4, b = 2 ⇒ nlogba= n2; f (n) = n2.

CASE2: f (n) = Θ(n2lg0n), that is, k = 0.
∴ T(n) = Θ(n2lg n).



Example

Ex. T(n) = 4T(n/2) + n3

a = 4, b = 2 ⇒ nlogba= n2; f (n) = n3.

CASE3: f (n) = Ω(n2 + ε) for ε = 1
and 4(cn/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
∴ T(n) = Θ(n3).

L2.39

Ex. T(n) = 4T(n/2) + n2/lg n
a = 4, b = 2 ⇒ nlogba= n2; f (n) = n2/lg n.
Master method does not apply.  In particular, for every 
constant ε > 0, we have nε = ω(lg n).



Amortized analysis

• An amortized analysis is any strategy for analyzing a 

sequence of operations to show that the average cost 

per operation is small, even though a single 

operation within the sequence might be expensive.

• Amortized analysis differs from average case analysis 

in that probability is not involved.

• An amortized analysis guarantees the average 

performance of each operation in theworst case.



Types of amortized analysis

• Three common amortization arguments:

▫ The aggregate method,

▫ The accounting method,

▫ The potential method.



The aggregate method

• We show that for all n, if a sequence of n operations 

takes worst-case time T(n) in total, then amortized 

cost per operation is therefore T(n)/n.

• Example : incrementing a binary counter.



Binary Counter

• Consider a k-bit binary counter that counts upwards from 0. 

We use an array A[0..k-1] of bits.

• A binary number stored in the counter has its lowest bit in 

A[0] and its highest bit  in A[k-1], so that

∑ ⋅= −
=

1
0 2][k

i
i

iAx
• To add 1 to the value in the counter, we use following 

procedure

∑ ⋅= =0 2][i iAx

INCREMENT(A)
1. i ← 0
2. while i < length[A] and A[i] = 1
3. do A[i] ← 0          ⊳⊳⊳⊳ reset a bit
4. i ← i + 1
5. if  i < length[A]
6. then A[i] ← 1     ⊳⊳⊳⊳ set a bit



Ctr A[4] A[3] A[2] A[1] A[0] Cost

0 0 0 0 0 0 0

1 0 0 0 0 1 1

2 0 0 0 1 0 3

3 0 0 0 1 1 4

4 0 0 1 0 0 7

5 0 0 1 0 1 8

6 0 0 1 1 0 10

7 0 0 1 1 1 117 0 0 1 1 1 11

8 0 1 0 0 0 15

9 0 1 0 0 1 16

10 0 1 0 1 0 18

11 0 1 0 1 1 19

12 0 1 1 0 0 22

13 0 1 1 0 1 23

14 0 1 1 1 0 25

15 0 1 1 1 1 26

16 1 0 0 0 0 31



Worst-case analysis

• Consider a sequence of n increments.  The worst-case 

time to execute one increment is Θ(k).  Therefore, the 

worst-case time for n increments is n ·  Θ(k) = Θ(n⋅ k).

• WRONG! In fact, the worst-case cost for n

increments is only Θ(n) ≪ Θ(n⋅ k).increments is only Θ(n) ≪ Θ(n⋅ k).

• Let’s see why.



Tighter analysis
Ctr A[4] A[3] A[2] A[1] A[0] Cost

0 0 0 0 0 0 0

1 0 0 0 0 1 1

2 0 0 0 1 0 3

3 0 0 0 1 1 4

4 0 0 1 0 0 7

5 0 0 1 0 1 8

6 0 0 1 1 0 10

Total cost of n operations

A[0] flipped every op n

A[1] flipped every 2 ops  n/2

A[2] flipped every 4 ops  n/22

A[3] flipped every 8 ops  n/23

…       …       …     …       … 6 0 0 1 1 0 10

7 0 0 1 1 1 11

8 0 1 0 0 0 15

9 0 1 0 0 1 16

10 0 1 0 1 0 18

11 0 1 0 1 1 19

12 0 1 1 0 0 22

13 0 1 1 0 1 23

14 0 1 1 1 0 25

15 0 1 1 1 1 26

16 1 0 0 0 0 31

…       …       …     …       … 

A[i] flipped every 2i ops  n/2i



Tighter analysis…
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operation is Θ(n)/n = Θ(1).



Accounting method

• We assign differing charges to different operations, 

with some operations charged more or less than they 

actually cost.

• The amount we charge an operation is called 

amortized cost. amortized cost. 

• When an operation’s amortized cost exceeds its actual 

cost, the difference is called credit.

• Credit can be used later to pay for operations whose 

amortized cost is less than their actual cost.



A Simple Example: Accounting method

3 ops:

1

1

1

1

1

1

1

1

1

0

1

1

0

0

0

Push(S,x) Pop(S) Multi-pop(S,k)

•Amortized 

cost:
2 0 0

•Actual cost: 1 1 min(|S|,k)

1 1 1

Push(S,x) pays for possible later pop of x.



Stack Example: Accounting Method

• When pushing an object, pay $2 

• $1 pays for the push

• $1 is prepayment for it being popped by either 
pop or Multipop

• Since each object has $1, which is credit, the • Since each object has $1, which is credit, the 
credit can never go negative 

• Therefore, total amortized cost = O(n), is an 
upper bound on total actual cost



Accounting analysis of INCREMENT

• Charge an amortized cost of $2 every time a bit is set 

from 0 to 1

• $1 pays for the actual bit setting.

• $1 is stored for later re-setting (from 1 to 0).

• At any point, every 1 bit in the counter has $1 on it… • At any point, every 1 bit in the counter has $1 on it… 

that pays for resetting it. (reset is “free”)

Example:

0   0   0   1$1 0   1$1 0  

0   0   0   1$1 0   1$1 1$1

0   0   0   1$1 1$1 0 0

Cost = $2

Cost = $2



Incrementing a Binary Counter
INCREMENT(A)
1. i ← 0
2. while i < length[A] and A[i] = 1
3. do A[i] ← 0   ⊳⊳⊳⊳ reset a bit
4. i ← i + 1
5. if  i < length[A]
6. then A[i] ← 1    ⊳⊳⊳⊳ set a bit

• When Incrementing, 
▫ Amortized cost for line 3 = $0

▫ Amortized cost for line 6 = $2

• Amortized cost for INCREMENT(A) = $2

• Amortized cost for n INCREMENT(A) = $2n =O(n)



The potential method

• Represent prepaid work as “potential energy” or 

“potential”, that can be released to pay for future 

operations.

• Potential is associated with the data structure as a 

whole, rather than with specific object within the data whole, rather than with specific object within the data 

structure.



The potential method

• Start with an initial data structure D0.

• Operation i transforms Di–1 to Di.  

• The actual cost of operation i is ci.

• Define a potential function Φ : {Di} → R,
such that Φ(D0 ) = 0 and Φ(Di ) ≥ 0 for all i. such that Φ(D0 ) = 0 and Φ(Di ) ≥ 0 for all i. 

• The amortized cost ĉi with respect to Φ is defined to 

be ĉi = ci + Φ(Di) – Φ(Di–1). 

i.e.  Amortized cost = actual cost + increase in potential 

due to operation.



Understanding potential

ĉi = ci + Φ(Di) – Φ(Di–1)

potential difference ∆Φi

• If  ∆Φ > 0, then ĉ > c .  Operation i stores • If  ∆Φi > 0, then ĉi > ci.  Operation i stores 
work in the data structure for later use.

• If  ∆Φi < 0, then ĉi < ci.  The data structure 
delivers up stored work to help pay for 
operation i.



Amortized costs bound the true costs

The total amortized cost of n operations is
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since Φ(Dn) ≥ 0 and
Φ(D0 ) = 0.



Stack Example: Potential

Define: φ(Di) = #items in stack Thus, φ(D0)=0.

Plug in for operations:
Push: ĉi = ci + φφφφ(Di) - φφφφ(Di-1)

= 1 +    j    - (j-1)= 1 +    j    - (j-1)

= 2

Pop: ĉi = ci + φφφφ(Di) - φφφφ(Di-1)

= 1 +  (j-1) - j

= 0

Multi-pop: ĉi = ci + φφφφ(Di) - φφφφ(Di-1)

= k’ + (j-k’) - j k’=min(|S|,k)

= 0



Potential analysis of INCREMENT

Define the potential of the counter after the ith

operation by Φ(Di) = bi, the number of 1’s in the 
counter after the ith operation.

Note:
• Φ(D ) = 0,• Φ(D0 ) = 0,
• Φ(Di) ≥ 0 for all i.

Example:

Φ = 20   0   0   1   0    1 0  

0   0   0   1$1 0   1$1 0  Accounting method)(



Potential analysis of INCREMENT

The amortized cost of the i th INCREMENT is

Assume ith INCREMENT resets ti bits (in line 3).
Actual cost ci = (ti + 1)
Number of 1’s after ith operation:  bi = bi–1 – ti + 1

ĉi = ci + Φ(Di) – Φ(Di–1)
= (ti + 1) + bi - bi–1
= (ti + 1) + (1 − ti)
= 2

Therefore, n INCREMENTs cost Θ(n) in the worst case.
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Disjoint Sets

�A disjoint set data structure maintains a collection  

S={S1, S2, …, Sk} of disjoint dynamic sets.

�Each set is identified by a representative, which is 

some member of the set.

�Supports following operations:�Supports following operations:

�MAKE_SET(x): creates a new set whose only 

member is pointed by x.

�UNION(x,y): unite the dynamic sets that contains x 

and y, say Sx and Sy.

�FIND_SET(x): returns a pointer to the representative 

of the set containing x.



Linked-List Implementation

• Each set as a linked-list, with head and tail, and each 

node contains value, next node pointer and back-to-

representative pointer.

Pointer to 
representative node

c h e

Set S1={c,h,e}

representative node

Value

Pointer to other 
member

Node structure



Linked-List for two sets

S1 c h e

Set S1={c,h,e}

f gS2
Set S2={f, g}

UNION of 
two Sets
S=S1 U S2

f cgS h e



Analysis

�MAKE_SET(x) takes O(1) time: create a new linked 

list whose only object is x.

e

�FIND_SET(x) takes O(1) time: return the pointer 

from x back to the representative.

f cgS h e



Union

�A simple implementation: UNION(x,y) just appends x to the 
end of y, updates all back-to-representative pointers in x to the 
head of y.

�Each UNION takes time linear in the x’s length.



Union: amortized cost
�Consider sequence of m operations. m=n+q

where q=n-1  

�Let we have objects x1, x2, … xn.

�We execute n MAKE-SET(xi) operations (O(1) each) followed by 
q= n-1 UNION

� UNION(x1, x2), O(1), 

� UNION(x , x ), O(2),� UNION(x2, x3), O(2),

� …..

� UNION(xn-1, xn), O(n-1) =O(q)

�The UNIONs cost 1+2+…+q=Θ(q2)

�So total time spent is Θ(n + q2),  which is Θ(m2), since n = Θ(m), 
and q = Θ(m). 

�Thus on average, each operation require Θ(m2)/m = Θ(m) time, that 
is the amortized time of one operation.



Weighted Union

• If we are appending longer list onto a shorter list; we 

must update the pointer to the representative for each 

member of the longer list.

• Suppose each representative node also stores length 

of list. This can be easily maintained.of list. This can be easily maintained.

• Weighted Union: we always append smaller list onto 

the longer list, with ties broken arbitrarily.



Weighted Union: analysis

�Result: a sequence of m MAKE-SET, UNION, FIND-SET 
operations, n of which are MAKE-SET operations, the running 
time is O(m+nlg n).   Why???

�Count the number of updates to back-to-representative pointer  
for any x in a set of n elements. Consider that each time, the 
UNION  will at least double the length of  united set, it will UNION  will at least double the length of  united set, it will 
take at most lg n UNIONS to unite n elements. So each x’s
back-to-representative pointer can be updated at most lg n
times. There are n objects so all Union operations taking n lg n
time.

�The UNION operation can stil take Ω(m) time if both sets 
have m elements.



Disjoint-Set Implementation: Forests 

• Rooted trees, each tree is a set, root is the 

representative. Each node points to its parent. Root 

points to itself.

cf

d

Set {c,h,e} Set {f,d}
UNION

h e

cc cf

d

h e

cc



Straightforward Solution

�Three operations
�MAKE-SET(x): create a tree containing x.  O(1)

�FIND-SET(x): follow the chain of parent pointers until to 

the root. O(height of x’s tree) 

�UNION(x,y): let the root of one tree point to the root of the 

other.  O(1)other.  O(1)

�It is possible that n-1 UNIONs results in a tree of 

height n-1. (just a linear chain of n nodes).

�So n FIND-SET operations will cost O(n2).



Union by Rank

�Union by Rank: Each node is associated with a rank, 

which is the upper bound on the height of the node 

(i.e., the height of subtree rooted at the node), then 

when UNION, let the root with smaller rank point to 

the root with larger rank. the root with larger rank. 

cf

d

h e

cc b g

ca cf

d

h e

cc

b g

ca



Path Compression

�Path Compression: used in FIND-SET(x) operation, 

make each node in the path from x to the root  

directly point to the root. Thus reduce the tree height.

cf
cf

dh

e

cc

b g

ca

cf

d

h e

cc

b g

ca

FIND-SET(j)
j

j



Path Compression

f

e

d

f

edc

c



Algorithm for Disjoint-Set Forest

MAKE-SET(x)
1. p[x]←x
2. rank[x]←0

LINK(x,y) FIND-SET(x)

UNION(x,y)
1. LINK(FIND-SET(x),FIND-SET(y))

LINK(x,y)
1. if rank[x]>rank[y]
2. then p[y] ←x
3. else p[x] ←y
4. if rank[x]=rank[y]
5. then rank[y]++

FIND-SET(x)
1. if x≠ p[x]
2. then p[x] ←FIND-SET(p[x])
3. return p[x]



Running time

• Total m operations.

• n MAKE-SET, 

• At most n-1 UNION, and

• f FIND-SET operations

• If we use only Union by Rank, Worst case running time• If we use only Union by Rank, Worst case running time

▫ Θ(n + f log(1+f/n) n) if f ≥ n,

▫ Θ(n + f lg n) if f < n.

• If we use both Union by Rank and path compression, 

Worst case running time is O(mα(m,n)) where α(m,n) is 

inverse of Ackermann’s function.

• α(m,n) ≤ 4  � O(m) running time   � O(m)/m =O(1) per 

operation.


