
Review of Elementary Data

Structures Structures (Part 2)

Manoj Kumar

DTU, Delhi

Linked List: Problem

• Find the address/data of first common node .

• Use only constant amount of additional space.

• Your algorithm should run in O(m+n)

4 6 8 33 45 77 6165…P1 Null

3 235 7 44…

P1

P2

Null

HashingHashing

Hashing : Introduction

�Suppose that we want to store 10,000 students

records (each with a 5-digit ID) in a given container.

Search operation on:

�A linked list implementation would take O(n)time.

�A height balanced tree would give O(log n)access �A height balanced tree would give O(log n)access

time.

�Using an array of size 100,000 would give O(N) time,

but will lead to a lot of space wastage.

�Is there some way that we could get O(1) search

time without wasting a lot of space?

�The answer is hashing.

�Data stored using hashing is called hashtable.

Hashing

�a data structure in which finds/searches are very fast

�As close to O(1) as possible

�minimum number of executed instructions per method

�Insertion and Deletion should be fast too

�Objects stored in hash table have unique keys�Objects stored in hash table have unique keys

�A key may be a single property/attribute value

�Or may be created from multiple properties/values

Hash tables vs. Other Data Structures

• We want to implement the operations Insert(), Delete() and

Search()/Find() efficiently.

• Arrays:

▫ can accomplish in O(1) time

▫ but are not space efficient (assumes we leave empty space for keys not

currently in dictionary)

• Binary search trees

▫ can accomplish in O(log n) time

▫ are space efficient.

• Hash Tables:

▫ A generalization of an array that under some reasonable assumptions is

O(1) for Insert/Delete/Search of a key

Hash Table

• Very useful data structure

▫ Good for storing and retrieving key-value pairs

▫ Not good for iterating through a list of items

• Example applications:

▫ Storing objects according to ID numbers▫ Storing objects according to ID numbers

� When the ID numbers are widely spread out

� When you don’t need to access items in ID order

Hash Tables – Conceptual View

obj1
key=158

7

table
buckets

h
a
s
h

 v
a
lu

e
/i

n
d

e
x

Obj5
key=1

Obj4
key=2

Obj2
key=31

6

5

4

3

2

1

0

Obj3
key=4

h
a
s
h

 v
a
lu

e
/i

n
d

e
x

Hash Table

�Hash Tables solve these problems by using a much smaller

array and mapping keys with a hash function.
�Let universe of keys U and an array of size m. A hash function

hhhh is a function from U to 0…m, that is:

hhhh :::: U 0…mhhhh :::: U 0…m

U

(universe of keys)

k1 k2

k3 k4

k6

0

1

2

3

4

5

6

7

h (k2)=2

h (k1)=h (k3)=3

h (k6)=5

h (k4)=7

Hash index/value

�A hash value or hash index is used to index the hash

table (array)

�A hash function takes a key and returns a hash

value/index

�The hash index is a integer (to index an array)�The hash index is a integer (to index an array)

�The key is specific value associated with a specific

object being stored in the hash table

�It is important that the key remain constant for the lifetime

of the object

Hash Function

�You want a hash function/algorithm that is:

�Fast

�Creates a good distribution of hash values so that the items

(based on their keys) are distributed evenly through the

array

�Hash functions can use as input�Hash functions can use as input

�Integer key values

�String key values

�Multipart key values

�Multipart fields, and/or

�Multiple fields

The mod function

�Stands for modulo

�When you divide x by y, you get a result and a remainder

�Mod is the remainder

� 8 mod 5 = 3

� 9 mod 5 = 4

� 10 mod 5 = 0� 10 mod 5 = 0

� 15 mod 5 = 0

�Thus for key-value mod M, multiples of M give the same

result, 0

�But multiples of other numbers do not give the same result

� So what happens when M is a prime number where the keys are not

multiples of M?

Hash Tables: Insert Example

�For example, if we hash keys 0…1000 into a hash

table with 5 entries and use hhhh(key) = key mod 5 , we

get the following sequence of events:

Insert 2 Insert 21 Insert 34 Insert 54

0

1

2

3

4

key data

2 …

0

1

2

3

4

key data

2 …

21 …

0

1

2

3

4

key data

2 …

21 …

34 …

There is a
collision at
array entry #4

???

What do we do about Collisions?

�Find a better hashing algorithm

�Collisions occur when two or more records compete for

the same address. Therefore we should try to find a

hashing algorithm that distributes records fairly evenly

among the available addresses

�Use a bigger table

�The more free slots in the table, the less likely there

will be a collision. But if you are doing lots of accesses,

using a bigger table will reduce the likelihood that two

accesses will reference the same part of the disk

�Need a system to deal with collisions

Dealing with Collisions

�A problem arises when we have two keys that hash in
the same array entry – this is called a collision.

�There are three ways to resolve collision:

�Hashing with Buckets: multiple records are stored in a
bucket (block)bucket (block)

�Hashing with Chaining (“Separate Chaining”): every
hash table entry contains a pointer to a linked list of keys
that hash in the same entry

�Hashing with Open Addressing: every hash table entry
contains only one key. If a new key hashes to a table entry
which is filled, systematically examine other table entries
until you find one empty entry to place the new key

Hashing with buckets

• A common strategy is to have space for more than

one record at each location in the hash table.

• Each location contains a bucket (or block or page) of

records.

• Each bucket contains a fixed number of records, • Each bucket contains a fixed number of records,

known as the blocking factor.

• The size of each bucket is set to the size of the block

of data that is read in on each disk read.

• Reading in a whole bucket takes one disk access

Hashing with Chaining

• The problem is that keys 34 and 54 hash in the same entry (4). We solve

this collision by placing all keys that hash in the same hash table entry in a

chain (linked list) or bucket (array) pointed by this entry:

0

other

key key data

Insert 54

0

Insert 101

0

1

2

3

4

2

21

54 34

CHAIN

0

1

2

3

4

2

101

54 34

21

Hashing with Chaining

• What is the running time to insert/search/delete?

▫ Insert: It takes O(1) time to compute the hash function and insert at

head of linked list

▫ Search: It is proportional to max linked list length

▫ Delete: Same as search

• Therefore, in the unfortunate event that we have a “bad” hash • Therefore, in the unfortunate event that we have a “bad” hash

function all n keys may hash in the same table entry giving an

O(n) run-time!

So how can we create a “good” hash function?

Hash Tables – Open Addressing

obj1
key=157

6

5

table

Obj3
key=27

Index=3

h
a
s
h

 v
a
lu

e
/i

n
d

e
x

Obj5
key=1

Obj4
key=2

Obj2
key=3

5

4

3

2

1

0

key=27
Index=3

h
a
s
h

 v
a
lu

e
/i

n
d

e
x

Index=3

Hashing with Open Addressing

�So far we have studies hashing with chaining, using a

list to store the items that hash to the same location

�Another option is to store all the items (references to

single items) directly in the table.

�Open addressing�Open addressing

�collisions are resolved by systematically examining other

table indexes, i0 , i1 , i2 , … until an empty slot is located.

Open Addressing

�The key is first mapped to an array cell using the

hash function (e.g. key % array-size)

�If there is a collision, find an available array cell

�There are different algorithms to find (to probe for)

the next array cellthe next array cell

�Linear

�Quadratic

�Double Hashing

Probe Algorithms (Collision Resolution)

�Linear Probing
�Choose the next available array cell

�First try arrayIndex = hash value + 1

�Then try arrayIndex = hash value + 2

�Be sure to wrap around the end of the array!

�arrayIndex = (arrayIndex + 1) % arraySize

�Stop when you have tried all possible array indices�Stop when you have tried all possible array indices

�If the array is full, you need to throw an exception or, better
yet, resize the array

Probe Algorithms (Collision Resolution)

�Quadratic Probing
�Variation of linear probing that uses a more complex

function to calculate the next cell to try
�First try arrayIndex = hash value + 12

�Then try arrayIndex = hash value + 22

�Be sure to wrap around the end of the array!

�arrayIndex = (arrayIndex + i2) % arraySize�arrayIndex = (arrayIndex + i2) % arraySize

Probe Algorithms (Collision Resolution)

Double Hashing

�Apply a second hash function after the first

�The second hash function, like the first, is dependent on the

key

�Secondary hash function must

�Be different than the first�Be different than the first

�Good algorithm:

� arrayIndex = (arrayIndex + stepSize) % arraySize;

�Where stepSize = constant – (key % constant)

�And constant is a prime less than the array size

Load factor

�Understanding the expected load factor will help you

determine the efficiency of you hash table implementation and

hash functions

�Load factor = number of items in hash table / array size

�For Open Addressing:

� If < 0.5, wasting space� If < 0.5, wasting space

� If > 0.8, overflows significant

�For Chaining:

� If < 1.0, wasting space

� If > 2.0, then search time to find a specific item may factor in

significantly to the [relative] performance

Hashing functions

�Our goal in choosing any hashing algorithm is to

spread out the records as uniformly as possible over

the range of addresses available.

�Mod function

�Let N be the maximum number of records expected.�Let N be the maximum number of records expected.

�Choose a prime number p > N

�Hash function: h(key) = key mod p

Other Hash functions

Truncation or Digit/Character Extraction

�Work based on the distribution of digits or characters in
the key.

�More evenly distributed digit positions are extracted and
used for hashing purposes.used for hashing purposes.

�For instance, students IDs or ISBN codes may contain
common subsequences which may increase the likelihood
of collision.

�Very fast, but digits/characters distribution in keys may
not be very even.

Other Hash functions

Folding

�It involves splitting keys into two or more parts and
then combining the parts to form the hash addresses.

�To map the key 25936715 to a range between 0 and
9999, we can:9999, we can:

�split the number into two as 2593 and 6715 and

�add these two to obtain 9308 as the hash value.

�Very useful if we have keys that are very large.

�Fast and simple especially with bit patterns.

�A great advantage is ability to transform non-integer
keys into integer values.

Other Hash functions

Radix Conversion

�Transforms a key into another number base to obtain

the hash value.

�Typically use number base other than base 10 and

base 2 to calculate the hash addresses.base 2 to calculate the hash addresses.

�To map the key 55354 in the range 0 to 9999 using

base 11 we have:

5535410= 3865211

�We may truncate the high-order 3 to yield 8652 as

our hash address within 0 to 9999.

Other Hash functions

Mid-Square

�The key is squared and the middle part of the result taken
as the hash value.

�To map the key 3121 into a hash table of size 1000, we
square it 31212 = 9740641 and extract 406 as the hash square it 31212 = 9740641 and extract 406 as the hash
value.

�Works well if the keys do not contain a lot of leading or
trailing zeros.

�Non-integer keys have to be preprocessed to obtain
corresponding integer values.

Some Applications of Hash Tables

� Database systems: Specifically, those that require efficient random
access. Generally, database systems try to optimize between two types
of access methods: sequential and random. Hash tables are an
important part of efficient random access because they provide a way
to locate data in a constant amount of time.

� Symbol tables: The tables used by compilers to maintain information
about symbols from a program. Compilers access information about
symbols frequently. Therefore, it is important that symbol tables be symbols frequently. Therefore, it is important that symbol tables be
implemented very efficiently.

� Data dictionaries: Data structures that support adding, deleting, and
searching for data. Although the operations of a hash table and a data
dictionary are similar, other data structures may be used to implement
data dictionaries. Using a hash table is particularly efficient.

� Network processing algorithms: Hash tables are fundamental
components of several network processing algorithms and
applications, including route lookup, packet classification, and
network monitoring.

Sparse Matrices

0 0 0 0 4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 11 0 0

0 0 5 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 8

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 7 0 0 0

0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

Sparse Matrices

�a matrix populated primarily with zeros.

�If most of the entries of a matrix are 0, then the

matrix is said to be sparse

�In such a case, it may be very expensive to store zero �In such a case, it may be very expensive to store zero

values for two reasons:

�The actual storage—if most entries are 0, do we need

to store them?

�Matrix operations—the results do not require

computation:

�x + 0 = x and x·0 = 0

Dense and sparse matrix

-25 0 67 4 12

1 8 45 61 2

7 98 0 32 -5

11 43 60 19 31

Dense
matrix

co
l

0

co
l

1

co
l

2

co
l

3

co
l

4

Row 0

Row 1

Row 2

Row 3

0

1

2

3

4 5 6

16 0 0 0 12 0 0

0 0 11 0 0 3 0

0 5 0 0 0 0 6

0 0 0 0 0 0 0

13 0 0 0 0 0 4

Sparse Matrix

Row 0

Row 1

Row 2

Row 3

Row 4

co
l

0

co
l

1

co
l

2

co
l

3

co
l

4

co
l

5

co
l

6

Sparse matrix: density

�The density of a matrix is defined as the ratio of

non-zero entries over the total number of entries

�A matrix with density around or less than 0.1 or

10% is usually considered to be sparse

Sparse Matrices

�For such sparse N × N matrices, we will
�Denote the number of non-zero entries by m

�The density of a matrix is defined as the ratio of
non-zero entries over the total number of entries

�The density is

�The row density is the average number of non-zero
values per row:

�A matrix with density less than 0.1 or 10 % is usually
considered to be sparse
�Usually, m = O(N)

2
N

m

N

m

Sparse matrix representation

16 0 0 0 12 0 0

0 0 11 0 0 3 0

0 5 0 0 0 0 6

0 0 0 0 0 0 0

13 0 0 0 0 0 4

Row 0

Row 1

Row 2

Row 3

Row 4

co
l

0

co
l

1

co
l

2

co
l

3

co
l

4

co
l

5

C
o
l

6

5 7 8

R
o
w

 n
o
.

C
o
l.

n
o
.

V
a
lu

e

0

#Rows
#Columns

#nonzero
values

13 0 0 0 0 0 4

General Matrix
representation

(Space required =
5x7x2 = 70 bytes)

Row 4 5 7 8

0 0 16

0 4 12

1 2 11

1 5 3

2 1 5

2 6 6

4 0 13

4 6 4

0

1

2

3

4

5

6

7

8

Triplet
representation

(Space required =
(1+8)x6 = 54 bytes)

Transpose of sparse matrix

5 7 8

0 0 16

0 4 12

1 2 11

R
o
w

 n
o
.

C
o
l.

n
o
.

V
a
lu

e

0

1

2

3

7 5 8

0 0 16

0 4 13

1 2 5

R
o
w

 n
o
.

C
o
l.

n
o
.

V
a
lu

e

0

1

2

31 2 11

1 5 3

2 1 5

2 6 6

4 0 13

4 6 4

3

4

5

6

7

8

1 2 5

2 1 11

4 0 12

5 1 3

6 2 6

6 4 4

3

4

5

6

7

8

Sparse Matrix A Transpose of Matrix A

return the matrix produced by interchanging
the row and column value of every triple and then sort

them by (row, column).

Transpose: algorithm O(nt)
Transpose (sparse A[], sparse B[])

{

m =A[0].row; n = A[0].col; t = A[0].value; // A is (m x n) matrix

B[0].row = n;

B[0].col = m; // B is (n x m) matrix

B[0].value = t;

IF (t > 0) THEN

{

q = 1;

FOR cl = 0 TO n-1 DO //Transpose by columns

{{

FOR p = 1 TO t DO // Search for next element of column cl

{

IF (A[p].col = cl) THEN

{

B[q].row = A[p].col; //Copy from A to B

B[q].col = A[p].row;

B[q].value = A[p].value;

q = q+1;

}

}

}

} //end of IF

}

Fast Transpose: O(n+t)

�First determine number of elements in each column

of matrix A.

�This gives us the number of elements in each row of

transpose matrix B.

�Thus starting point of each row in matrix B can be �Thus starting point of each row in matrix B can be

easily computed.

�Now we can move elements from matrix A one by

one into their correct position in B.

Fast Transpose algorithm
FastTranspose(Sparse A[], Sparse B[])

{

n = A[0].col; terms = A[0].value;

B[0].row = n; B[0].col = A[0].row; B[0].value = terms;

IF (terms > 0) THEN

{

FOR i = 0 TO n-1 DO s[i] = 0; // Compute s[i] = number of terms

FOR i =1 TO terms DO s[A[i].col]++; // in row i of matrix B

t[0] = 1; // Compute t[i] = starting position of row i in Bt[0] = 1; // Compute t[i] = starting position of row i in B

FOR i =1 TO n-1 DO t[i] = t[i-1] + s[i-1];

FOR i = 1 TO terms DO // Move elements from A to B

{

j = t[A[i].col];

B[j].row = A[i].col;

B[j].col = A[i].row;

B[j].value = A[i].value;

t[A[i].col] = j+1;

}

}

}

Addition of sparse matrices

5 7 6

0 0 9

0 4 7

2 3 11

3 5 13

0

1

2

3

4

5 7 5

0 4 5

1 2 14

3 5 4

3 6 8

0

1

2

3

4

5 7 8

0 0 9

0 4 12

1 2 14

2 3 11

0

1

2

3

4

+ =

R
o
w

C
o
l

V
a
lu

e

R
o
w

C
o
l

V
a
lu

e

R
o
w

C
o
l

V
a
lu

e

3 5 13

4 1 5

4 6 8

4

5

6

Sparse Matrix A

3 6 8

4 6 3

4

5

Sparse Matrix B

2 3 11

3 5 17

3 6 8

4 1 5

4 6 11

4

5

6

7

8

Sparse Matrix C

Sparse Matrix: Linked List representation

1. Single chain

Node Structure

row col

nextvalue

5 7 6

0 0 9

0 4 7

2 3 11

3 5 13

0

1

2

3

4
Node Structure

3 5 13

4 1 5

4 6 8

4

5

6

Sparse Matrix A

0 0

9

0 4

7

2

11

3

13

4

5

4

8

3 5 615 7

6

Head node

Sparse Matrix: Linked List representation

2. One Linked List Per Row

Node structure

next

valuecol

5 7 60

90

null

74
0

Row

null

5 7 6

0 0 9

0 4 7

2 3 11

3 5 13

4 1 5

4 6 8

0

1

2

3

4

5

6

Sparse Matrix A

51

null

86

113

null

135

null

1

2

3

4

Sparse Matrix: Linked List representation

3. Orthogonal List Representation

Node structure
row col

nextdown

value

Row Lists

0 0 3 0 4
0 0 5 7 0
0 0 0 0 0

0 2 3 0 4 4

1 2 5 1 3 7

n

0 0 0 0 0
0 2 6 0 0

null

3 1 2 3 2 6

n

n

Column list

0 0 3 0 4
0 0 5 7 0
0 0 0 0 0

0 2 3 0 4 4

1 2 5 1 3 7

n

0 0 0 0 0
0 2 6 0 0

3 1 2 3 2 6

nn

Orthogonal List

null

0 2 3 0 4 4

1 2 5 1 3 7

n n

0 0 3 0 4
0 0 5 7 0

null

row[]

1 2 5 1 3 7

3 1 2 3 2 6

n

nnn

0 0 5 7 0
0 0 0 0 0
0 2 6 0 0

Sorting algorithms

• Selection sort

• Bubble sort

• Insertion sort

• Merge sort

• Quick sort• Quick sort

• Heap sort

Stable sort algorithms

• A stable sort keeps equal

elements in the same

order

• This may matter when

you are sorting data

Bob

Ann

Joe

Dan

90

98

98

75 Bob

Ann

Joe

Sam

90

98

98

90you are sorting data

according to some

characteristic

• Example: sorting

students by test scores

Joe

Zöe

Pat

Sam

98

86

86

90

original
array

Zöe

Dan

Pat

Sam

86

75

86

90

stably
sorted

Unstable sort algorithms

• An unstable sort may or

may not keep equal

elements in the same order

• Stability is usually not

important, but sometimes

Bob

Ann

Joe

Dan

90

98

98

75 Bob

Ann

Joe

Sam

90

98

98

90important, but sometimes

it is important
Joe

Zöe

Pat

Sam

98

86

86

90

original
array

Zöe

Dan

Pat

Sam

86

75

86

90

unstably
sorted

Selection Sort

The algorithm works as follows:

�Find the minimum value in the list

�Swap it with the value in the first position

�Repeat the steps above for the remainder of the list

(starting at the second position and advancing each (starting at the second position and advancing each

time)

�Effectively, the list is divided into two parts:

�the sublist of items already sorted, which is built up

from left to right and is found at the beginning, and

�the sublist of items remaining to be sorted, occupying

the remainder of the array.

Selection Sort

Rounds: 1 2 3 4 5 6 7 8

Total rounds: N-1
Round1: select smallest from N elements and exchange with 1st element.
Round 2: select smallest from N-1 elements and exchange with 2nd element
…
Round N-1: select smallest from 2 elements and exchange with (N-1)th

element.

Selection Sort: Algorothm

Selection_Sort(A[], N)

{

FOR i = 0 TO N-2 DO // total N-1 rounds

{

minIndex = i; // index of smallest

FOR j = i+1 TO N-1 DOFOR j = i+1 TO N-1 DO

{

IF (A[j] < A[minIndex]) THEN

minIndex=j;

}

swap A[i] ��A[minIndex]); //swap smallest with top

//of array

}

}

Selection Sort: Analysis

Total work done =

N+

(N-1) +

(N-2) +

……

+ 2 ≈ N*(N-1)/2 = O(N2)

Bubble Sort

u
n
s
o
r
t
e

One round of Bubble Sort

Number of comparisons: N-1 (N-1 pairs)
Result of this round: largest element is settled at bottom

Next Round: repeat for first N-1 elements

e
d

Bubble Sort …

u
n
s
o
r
te
d

Bubble Sort: list is already sorted

No swapping performed during first round
Do not perform remaining round(s) is array is already sorted

Bubble Sort: Algorithm
Bubble_Sort(A[], N)
{

FOR i = 1 TO N-1 DO // total N-1 rounds required
{

flag = 0; // to check if any element is swapped
FOR j = 0 TO N-1-i DO
{

IF (A[j] >A[j+1]) THEN
{{

swap A[j] �� A[j+1];
flag = 1; //swapping done; set flag

}
}
IF (flag == 0) THEN break; // array is already sorted; skip remaining rounds

}
}

Bubble Sort: Analysis

�Number of comparisons in round 1: N-1

�Number of comparisons in round 2: N-2

…..

�Number of comparisons in round N-1: 1

�Total comparisons done : (N-1)+(N-2)+…. + 1

= (N-1)*(N-2)/2

= O(N2)

�Best case: (array already sorted): Ω(N)

Insertion Sort

3 7 12 18
Key=5 to
be inserted

Sorted array

3 5 7 12 18

Insertion Sort

� Array containing only first element is sorted.
� Insert remaining elements one by one into sorted array.

Insertion Sort: Algorithm

Insertion_Sort(A[], N)
{

FOR j = 1 TO N-1 DO
{

key = A[j];
//put A[j] into the sorted sequence A[0 . . j − 1]
i = j − 1;i = j − 1;
WHILE (i > 0 AND A[i] > key) DO
{

A[i +1] = A[i];
i = i − 1;

}
A[i + 1] = key;

}
}

Insertion Sort

• Worst case Analysis

▫ Initial sorted array size = 1

▫ Shifting required to insert A[1] =1

▫ Shifting required to insert A[2] =2

▫ Shifting required to insert A[3] =3▫ Shifting required to insert A[3] =3

……

▫ Shifting required to insert A[N-1] =N-1

• Total numbers shifted = 1+2+3+….+(N-1)

= O(N2)

Quick Sort

�Aim in each round:

�Select a pivot element x (say first element)

�Find correct position of x in array.

�While doing this, move all numbers smaller than x,

before x and all elements larger than x, after x.before x and all elements larger than x, after x.

�Now array is divided into two parts

�First: section of array before x (numbers < x)

�Second: section of array after x (numbers > x)

�Apply quick sort on these two sections.

Pivot
element

Quick Sort : One pass
43 22 67 14 54 12 37 80 51 60

43 22 67 14 54 12 37 80 51 60

Pivot
element

i j

ji

swap

swap

43 22 37 14 54 12 67 80 51 60

Pivot
element i j

43 22 37 14 12 54 67 80 51 60

Pivot
element ij

swap

12 22 37 14 43 54 67 80 51 60

Second sectionFirst section
j

Quick_Sort: Algorithm
Quick_Sort(A[], first, last)

{

IF (first < last) THEN

{

pivot = A[first];

i = first;

j = last;

WHILE (i < j) DO

{

WHILE (A[i] <= A[pivot] AND i < last) DO i = i + 1;

WHILE (A[j] > A[pivot]) DO j = j - 1;

IF (i < j) THEN

{ // swap A[i] and A[j]

swap A[i] ��������A[j];

}

}

temp = A[pivot];

A[pivot] = A[j];

A[j] = temp;

Quick_Sort (A, first, j-1);

Quick_Sort (A, j+1, last);

}

}

Quick Sort : Analysis

• Depth of recursion: log N times

• In every pass, max N elements are processed.

• Complexity: θ(N logN) average case

• Worst case: O(N2)

Merge Sort

32 11 7 54 72 39 5 26 33 15 23

32 11 7 54 72 39 5 26 33 15 23

11 32 7 54 39 72 5 26 15 33 2311 32 7 54 39 72 5 26 15 33 23

7 11 32 54 5 26 39 72 15 23 33

5 7 11 26 32 39 54 72 15 23 33

5 7 11 15 23 26 32 33 39 54 72

Merge Sort : a recursive algorithm

mergeSort(A[],left,right)

{ // sort A[left .. right]

IF (left < right) THEN

{ // at least two elements

mid = (left+right)/2; //midpoint

mergeSort(A, left, mid); //sort first half

mergeSort(A, mid + 1, right); //sort other half

merge(A, B, left, mid, right); //merge from A to B

copy(B, A, left, right); //copy result back to A

}

}

Merge Sort: Analysis

• Number of passes: Log(N)

• Number of elements processes in each pass: N

• Complexity: O(N logN)

Heap

Definition:

A heap is a list in which each element contains a key,

such that the key in the element at position k in the

list is at least as large as the key in the element at

position 2k + 1 (if it exists), and 2k + 2 (if it exists)position 2k + 1 (if it exists), and 2k + 2 (if it exists)

Heap

Building a Heap

�Build Heap Build Heap

The above list is not a heap. Let’s see how to

build it into a heap

Building a Heap

Binary tree after swapping 56 and 65

Building a Heap

Binary tree after swapping 92 and 70Binary tree after swapping 92 and 70

Binary tree after processing 72: no swapping required

Building a Heap

Binary tree after swapping 92 and 60 Binary tree after swapping 92 and 60

Binary tree after swapping 60 and 70

Binary tree after swapping 92 and 15

Binary tree after swapping 15 and 70

Binary tree after swapping 15 and 60

� Now, the list becomes a heap

Heap: deleteMax

• Swap first element(Max) with last element

• Remove last element from heap

• Adjust the heap so that it satisfies heap property.

Heap: deleteMax

92

70 72

4515

60 3265

30 56

62

56

70 72

4515

60 3265

30 92

62

Swap first with last (92 with 56)

Remove last element(92)

Heap: deleteMax

56

70 72

4515

60 3265

30

62

Heap property disturbed: Adjust it

72

70 56

4515

60 3265

30

62

Binary heap after swapping 56 with 72

Heap: deleteMax

72

70 62

4515

60 3265

30

56

�Now it is again a Heap

Binary heap after swapping 56 with 62

Heap Sort

1. Convert initial array into a heap.

2. deleteMax : actually place largest at end of array.

3. repeat step 2 on reduced size heap.

Heap Sort

15

60 72

4592

70 3256

30 65

62

Initial tree: not a heap

15 60 72 70 56 32 62 92 45 30 65

0 1 2 3 4 5 6 7 8 9 10

4592 30 65 Initial tree: not a heap

92

70 72

4515

60 3265

30 56

62

After converting list into heap

92 70 72 60 65 32 62 15 45 30 56

0 1 2 3 4 5 6 7 8 9 10

Heap Sort

After deleting largest element (92) from heap

72 70 62 60 65 32 56 15 45 30 92

0 1 2 3 4 5 6 7 8 9 10

72

70 62

60 3265 56

After deleting largest element (92) from heap
4515 30

After deleting largest element (72) from heap

70 65 62 60 30 32 56 15 45 72 92

0 1 2 3 4 5 6 7 8 9 10

70

65 62

4515

60 3230 56

Heap Sort

65 60 62 45 30 32 56 15 70 72 92

0 1 2 3 4 5 6 7 8 9 10

65

60 62

45 3230 56

After deleting largest element (70) from heap15

After deleting largest element (65) from heap

62 60 56 45 30 32 15 65 70 72 92

0 1 2 3 4 5 6 7 8 9 10

62

60 56

45 3230 15

Heap Sort

60 45 56 15 30 32 62 65 70 72 92

0 1 2 3 4 5 6 7 8 9 10

60

45 56

15 3230

After deleting largest element (62) from heap

After deleting largest element (60) from heap

56 45 32 15 30 60 62 65 70 72 92

0 1 2 3 4 5 6 7 8 9 10

56

45 32

15 30

Heap Sort

After deleting largest element (56) from heap

45 30 32 15 56 60 62 65 70 72 92

0 1 2 3 4 5 6 7 8 9 10

45

30 32

15

After deleting largest element (56) from heap

After deleting largest element (45) from heap

32 30 15 45 56 60 62 65 70 72 92

0 1 2 3 4 5 6 7 8 9 10

32

30 15

Heap Sort

After deleting largest element (32) from heap

30 15 32 45 56 60 62 65 70 72 92

0 1 2 3 4 5 6 7 8 9 10

30

15

0 1 2 3 4 5 6 7 8 9 10

After deleting largest element (30) from heap

15 30 32 45 56 60 62 65 70 72 92

0 1 2 3 4 5 6 7 8 9 10

15

After deleting largest element (15) from heap

Now array is sorted

15 30 32 45 56 60 62 65 70 72 92

0 1 2 3 4 5 6 7 8 9 10

Build initial Heap: Algorithm
Build_Heap(A[], N)

{

FOR i=n/2 -1 DOWNTO 0 DO

{

Heapify(A,N, i); // convert array into heap

}

}

Heapify(A[], N,i); //Heap property is disturbed at node i, adjust it

{

left=2*i+1; right=2*i+2;left=2*i+1; right=2*i+2;

IF (left < N AND A[left] > A[i]) THEN

largest = left; // find largest of two children

ELSE

largest = i;

IF (right <N AND A[right] > A[largest]) THEN

largest=right;

IF largest NOT = i) THEN

{ //if needed exchange parent with larger child

exchange A[i] �� A[largest]

Heapify(A,N,largest); //now heap property of child is disturbed, adjust it

}

}

Heap Sort : Algorithm

Heap_Sort(A[],N)

{

FOR i=N-1 DOWNTO 1 DO

{

swap A[0] �� A[i]; //move largest at end

N=N-1; //remove last element from heap

Heapify(A,N,0); //now adjust heap property of
first node

}

}

Order O(N logN) algorithm

