
Dynamic Programming

All Pair Shortest Path

Manoj Kumar

DTU, Delhi

The All-Pairs Shortest Paths Problem

Solution 1: Using Dijkstra’s Algorithm

Solution 2: Dynamic Programming

1. How do we decompose the all-pairs shortest paths

problem into sub problems?

2. How do we express the optimal solution of a sub

problem in terms of optimal solutions to some sub

problems?problems?

3. How do we use the recursive relation from (2) to

compute the optimal solution in a bottom-up

fashion?

4. How do we construct all the shortest paths?

Solution2:Input and Output Formats

Step 1: How to Decompose the Original Problem

• Subproblems with smaller sizes should be easier to

solve.

• An optimal solution to a subproblem should be

expressed in terms of the optimal solutions to

subproblems with smaller sizessubproblems with smaller sizes

These are guidelines ONLY

Step 1: Decompose in a Natural Way

= True Distance from i to j

A Recursive Formula

A Recursive Formula

Step 3: Bottom-up Computation of

Example: Bottom-up Computation of

for m � 1 to n-1
do for i � 1 to n

do for j � 1 to n
do min � ∞

for k � 1 to n
do new � +wkj

if (new < min) if (new < min)
then min � new

� min

Comments on Solution 2

Repeated Squaring

Repeated Squaring

The Floyd-Warshall Algorithm

Step2: Structure of shortest path

Step2: Structure of shortest path

Step2: Structure of shortest path

Step 3: the Bottom-up Computation

The Floyd-Warshall Algorithm: Version 1

Comments on the Floyd-Warshall Algorithm

The Floyd-Warshall Algorithm: Version 2

Extracting the Shortest Paths

Extracting the Shortest Paths

The Algorithm for Extracting the Shortest Paths

Backtracking

• A backtracking algorithm tries to build a solution to a

computational problem incrementally.

• Suppose you have to make a series of decisions,

among various choices, where

▫ You don’t have enough information to know what to ▫ You don’t have enough information to know what to

choose

▫ Each decision leads to a new set of choices

▫ Some sequence of choices (possibly more than one)

may be a solution to your problem

• Backtracking is a methodical way of trying out

various sequences of decisions, until you find one

that “works”

Backtracking

• Is used to solve problems for which a sequence of

objects is to be selected from a set such that the

sequence satisfies some constraint

• Traverses the state space using a depth-first search

with pruningwith pruning

Backtracking

• Performs a depth-first traversal of a tree

• Continues until it reaches a node that is non-viable or

non-promising

• Prunes the sub tree rooted at this node and continues

the depth-first traversal of the treethe depth-first traversal of the tree

Solving a maze

• Given a maze, find a path from
start to finish

• At each intersection, you have
to decide between three or
fewer choices:
▫ Go straight
▫ Go left
▫ Go right

•
▫ Go right

• You don’t have enough
information to choose correctly

• Each choice leads to another
set of choices

• One or more sequences of
choices may (or may not) lead
to a solution.

• Many types of maze problem
can be solved with
backtracking

Backtracking

start ?

?

dead end

dead end

?
?

dead end

start ? ?
?

dead end

?

success!

dead end

The Backtracking Method

• A given problem has a set of constraints and
possibly an objective function

• The solution optimizes an objective function,
and/or is feasible.

• We can represent the solution space for the
problem using a state space treeproblem using a state space tree
▫ The root of the tree represents 0 choices,

▫ Nodes at depth 1 represent first choice

▫ Nodes at depth 2 represent the second choice, etc.

▫ In this tree a path from a root to a leaf represents a
candidate solution

Sum of subsets

• Problem: Given n positive integers w1, ... wn and

a positive integer S. Find all subsets of w1, ... wn

that sum to S.

• Example:

n=3, S=6, and w1=2, w2=4, w3=6n=3, S=6, and w1=2, w2=4, w3=6

• Solutions:

{2,4} and {6}

• We will assume a binary state space tree.

• The nodes at depth 1 are for including (yes, no)

item 1, the nodes at depth 2 are for item 2, etc.

• The left branch includes wi, and the right branch

excludes wi.

• The nodes contain the sum of the weights included

so far

Sum of subset Problem:

State SpaceTree for 3 items

w1 = 2, w2 = 4, w3 = 6 and S = 6

i1

yes no

0

0

2

yes no noyes

i2

i3

0

0

2

2

6

612 8

4

410 6

yes

yes

no

no

no

nonono

The sum of the included integers is stored at the node.

yes

yes yesyes

A Depth First Search solution

• Problems can be solved using depth first search of

the (implicit) state space tree.

• Each node will save its depth and its (possibly

partial) current solutionpartial) current solution

• DFS can check whether node v is a leaf.

▫ If it is a leaf then check if the current solution

satisfies the constraints

▫ Code can be added to find the optimal solution

A DFS solution

• Such a DFS algorithm will be very slow.

• It does not check for every solution state (node)

whether a solution has been reached, or whether a

partial solution can lead to a feasible solution partial solution can lead to a feasible solution

• Is there a more efficient solution?

Backtracking solution

• Definition: We call a node nonpromising if it

cannot lead to a feasible (or optimal) solution,

otherwise it is promising

• Main idea: Backtracking consists of doing a • Main idea: Backtracking consists of doing a

DFS of the state space tree, checking whether each

node is promising and if the node is nonpromising

backtracking to the node’s parent

Backtracking solution

• The state space tree consisting of expanded nodes

only is called the pruned state space tree

• The following slide shows the pruned state space

tree for the sum of subsets example

• There are only 15 nodes in the pruned state space • There are only 15 nodes in the pruned state space

tree

• The full state space tree has 31 nodes

A Pruned State Space Tree (find all solutions)

w1 = 3, w2 = 4, w3 = 5, w4 = 6; S = 13

0

0

0

3

37 4

3

4 40

0

0

03

3

7

712 8

4

49

5 5 50 0 0

06

13 7

Sum of subsets problem

Backtracking algorithm

void checknode (node v) {

node u

if (promising (v))

if (aSolutionAt(v))

write the solutionwrite the solution

else //expand the node

for (each child u of v)

checknode (u)

Checknode

• Checknode uses the functions:

▫ promising(v) which checks that the partial solution

represented by v can lead to the required solution

▫ aSolutionAt(v) which checks whether the partial

solution represented by node v solves the problem.

Sum of subsets – when is a node “promising”?

• Consider a node at depth i

• weightSoFar = weight of node, i.e., sum of numbers
included in partial solution node represents

• totalPossibleLeft = weight of the remaining items
i+1 to n (for a node at depth i)i+1 to n (for a node at depth i)

• A node at depth i is non-promising
if (weightSoFar + totalPossibleLeft < S)
or (weightSoFar + w[i+1] > S)

• To be able to use this “promising function” the wi

must be sorted in non-decreasing order

A Pruned State Space Tree

w1 = 3, w2 = 4, w3 = 5, w4 = 6; S = 13

0

0

3

3

4 40

0

0

1

2
11

12
03

3

7

712 8

4

49

5 5 50 0 0

06

13 7 - backtrack

3

4 5

6 7

8

109

12
15

14

13

Nodes numbered in “call” order

sumOfSubsets (i, weightSoFar, totalPossibleLeft)
1. if (promising (i)) //may lead to solution
2. then if (weightSoFar == S)
3. then print include[1] to include[i] //found solution
4. else //expand the node when weightSoFar < S
5. include [i + 1] = "yes” //try including
6. sumOfSubsets (i + 1,

weightSoFar + w[i + 1],weightSoFar + w[i + 1],
totalPossibleLeft - w[i + 1])

7. include [i + 1] = "no” //try excluding
8. sumOfSubsets (i + 1, weightSoFar ,

totalPossibleLeft - w[i + 1])

boolean promising (i)
1. return (weightSoFar + totalPossibleLeft ≥ S) &&

(weightSoFar == S || weightSoFar + w[i + 1] ≤ S)
Prints all solutions!

Initial call sumOfSubsets(0, 0,)∑∑∑∑
====

n

i

i
w

1

The 8 Queens Problem

• Given is a chess board. A chess board has 8x8 fields.

Is it possible to place 8 queens on this board, so that

no two queens can attack each other?

The 8 Queens Problem

• NOTES: A queen can attack horizontally, vertically,

and on both diagonals, so it is pretty hard to place

several queens on one board so that they don’t attack

each other.

The n Queens problem:

• The n Queens problem:

• Given is a board of n by n squares. Is it possible to

place n queens (that behave exactly like chess

queens) on this board, without having any one of

them attack any other queen?them attack any other queen?

• Example: 2 Queens problem is not solvable.

Example 2: The 4-queens problem is solvable

Basic idea of solution:

• Start with one queen in the first column, first row.
• Start with another queen in the second column, first row.
• Go down with the second queen until you reach a

permissible situation.
• Advance to the next column, first row, and do the same

thing.
• If you cannot find a permissible situation in one column • If you cannot find a permissible situation in one column

and reach the bottom of it, then you have to go back to
the previous column and move one position down there.
(This is the backtracking step.)

• If you reach a permissible situation in the last column of
the board, then the problem is solved.

• If you have to backtrack BEFORE the first column, then
the problem is not solvable.

A slow example:

• cannot go further down in row 3. I must backtrack!

Complexity Classes: P and NP

• The P versus NP problem is a major unsolved

problem in computer science.

• Informally, it asks whether every problem whose

solution can be quickly verified by a computer can

also be quickly solved by a computer. also be quickly solved by a computer.

• The informal term quickly used above means the

existence of an algorithm for the task that runs

in polynomial time.

P and NP

• The general class of questions for which some

algorithm can provide an answer in polynomial time

is called "class P" or just "P".

• For some questions, there is no known way to find an

answer quickly, but if one is provided with answer quickly, but if one is provided with

information showing what the answer is, it may be

possible to verify the answer quickly.

• The class of questions for which an answer can be

verified in polynomial time is called NP.

NP:Example

• Consider the subset sum problem, an example of a problem
that is easy to verify, but whose answer may be difficult to
compute.

• Given a set of integers, does some nonempty subset of them
sum to 0?

• For instance, does a subset of the set {−2, −3, 15, 14, 7,
−10} add up to 0? −10} add up to 0?

• The answer "yes, because{−2, −3, −10, 15} add up to zero"
can be quickly verified with three additions.

• However, there is no known algorithm to find such a subset in
polynomial time (there is one, however, in exponential time,
which consists of 2n-1 tries), and indeed such an algorithm
cannot exist if the two complexity classes are not the same;
hence this problem is in NP (quickly checkable) but not
necessarily in P (quickly solvable).

• An answer to the P = NP question would determine

whether problems that can be verified in polynomial

time, like the subset-sum problem, can also be solved

in polynomial time.

• If it turned out that P does not equal NP, it would • If it turned out that P does not equal NP, it would

mean that there are problems in NP (such as NP-

complete problems) that are harder to compute than

to verify: they could not be solved in polynomial

time, but the answer could be verified in polynomial

time.

NP Complete and NP Hard

• To attack the P = NP question the concept of NP-
completeness is very useful.

• NP-complete problems are a set of problems to which
any other NP-problem can be reduced in polynomial
time, and whose solution may still be verified in
polynomial time. polynomial time.

• Informally, an NP-complete problem is at least as
"tough" as any other problem in NP.

• NP-hard problems are those at least as hard as NP-
complete problems, i.e., all NP-problems can be
reduced (in polynomial time) to them. NP-hard
problems need not be in NP, i.e., they need not have
solutions verifiable in polynomial time.

Euler diagram for P, NP, NP-complete, and
NP-hard set of problems

• For instance, the boolean satisfiability

problem is NP-complete.

• So any instance of any problem in NP can be

transformed mechanically into an instance of the

boolean satisfiability problem in polynomial time.boolean satisfiability problem in polynomial time.

• The boolean satisfiability problem is one of many

such NP-complete problems. If any NP-complete

problem is in P, then it would follow that P = NP.

• Unfortunately, many important problems have been

shown to be NP-complete, and as of 2012 not a

single fast algorithm for any of them is known.

NP Hard problems

• An example of an NP-hard problem is the

decision subset sum problem, which is this: given a

set of integers, does any non-empty subset of them

add up to zero?

• That is a decision problem, and happens to be NP-• That is a decision problem, and happens to be NP-

complete.

• Another example of an NP-hard problem is the

optimization problem of finding the least-cost cyclic

route through all nodes of a weighted graph.

• This is commonly known as the traveling salesman

problem.

