Dynamic Programming
All Pair Shortest Path

Manoj Kumar
DTU, Delhi

The All-Pairs Shortest Paths Problem

Given a weighted digraph G = (V, F) with weight
function w : £ — R, (R is the set of real numbers),
determine the length of the shortest path (i.e., dis-
tance) between all pairs of vertices in G. Here we
assume that there are no cycles with zero or negative

cost.

a0 5 a0 %
N S N
\\6 € /3/ " e _ /

12 5 O 4 |8 A (O~ 4 |5
k. \C\. f“\.{y O
N/ 17 _/f N4 10 N
d C d

without negative cost cycle with negative cost cycle

TR

Delhi .
IIIIIIIIII

Solution 1: Using Dijkstra’s Algorithm

If there are no negative cost edges apply Dijkstra’s al-
gorithm to each vertex (as the source) of the digraph.

e Recall that D’s algorithm runs in @ ((n—+e) log n).
This gives a

O(n(n+e)logn) = &(n?logn + nelogn)

time algorithm, where n = |V | and e = | F|.
e If the digraph is dense, this is an & (n> log n)algorithm.

e With more advanced (complicated) data structures
D’s algorithm runs in @(n log n + e)time yielding
a ©®(n?logn + ne) final algorithm. For dense
graphs this is ©(n3) time.

Delhi Technological
UUUUUUUUUU

Solution 2: Dynamic Programming

1. How do we decompose the all-pairs shortest paths

problem into sub problems?

2. How do we express the optimal solution of a sub

problem 1n terms of optimal solutions to some sub

problems?

3. How do we use the recursive relation from (2) to
compute the optimal solution i1n a bottom-up
fashion?

4. How do we construct all the shortest paths?

Solution2:Input and Output Formats

To simplify the notation, we assume that V = {1,2,...,n}.

Assume that the graph is represented by an n x n
matrix with the weights of the edges:

e if i = 7,
w;; = w(i,j) ifi#jand (i,j) € I,
e fi Z=jand (i,j) ¢ E.

Output Format: an n x n matrix D = [d;;] where d;;
Is the length of the shortest path from vertex : to 3.

XX
Delhi Technological
IIIIIIIIII

Step 1: How to Decompose the Original Problem

* Subproblems with smaller sizes should be easier to
solve.

 An optimal solution to a subproblem should be
expressed 1n terms of the optimal solutions to
subproblems with smaller sizes

These are guidelines ONLY

Step 1: Decompose in a Natural Way

e Define dg;”) to be the length of the shortest path
from 2 to 53 that contains at most m edges.
Let DU™) pbe the n x n matrix [dg”)] .

° dg?’_l) Is the true distance from z to ;3 (see next
page for a proof this conclusion).

e Subproblems: compute D(m) for m, = 1,---,n— 1.

Question: Which D(") s easiest to compute?

BEY)
Delhi Technological
IIIIIIIIII

—1 o .
"V = True Distance from i to j
Proof: We prove that any shortest path P from : to j
contains at most n — 1 edges.

First note that since all cycles have positive weight,
a shortest path can have no cycles (if there were a
cycle, we could remove it and lower the length of the
path).

A path without cycles can have length at mostn — 1
(since a longer path must contain some vertex twice,
that is, contain a cycle).

X
Delhi Technological
IIIIIIIIII

A Recursive Formula

Consider a shortest path from z to 3 of length dgn).

D

OO OO ®

e S Wi 5
m—1 m—1
dj;" Y ‘ ‘ T

Case 1: at most m — 1 edges Case 2: exactly m edges
shortest path shortest path

Case 1: It has at most m — 1 edges.

Then d{™ = a{™" 1) = al" b

Case 2: It has m edges. Let k be the vertex before j
on a shortest path.

Then d,g;f”) — d@(?‘_l) + wy,;-

200
Delhi Technological
IIIIIIIIII

A Recursive Formula

Combining the two cases,

tj 1<k<n

Step 3: Bottom-up Computation of D(»~1)

e Bottom: D(1) = [wij}, the weight matrix.

e Compute D(™) from D(m~1) form = 2, ..., n— 1,
using

(m) (m 1)
4 _1rgnk2 { —I—wk?}

Example: Bottom-up Computation of p(»~1)

Example

<

D) = [w;;] is just the weight matrix:

p—

=

O

OO
OO
4

3
O

O
@

8 oo |

4 11

O

o

-
O

Delhi Technological
UUUUUUUUUU

Example: Computing D) from D(1)

(2) _
dij = mi

- (1) _
19k24 {d”“ + wk:’} '

-

~8 8 o

88 ow

8 o r o

)
f .8 11
4 l 4 p(1) —
OEE—G)
With D(1) given earlier and the recursive formula,
O 3 7 14
p(2) — 15 0 4 11
11 oo 0 7
4 7 12 O

Y
O-I|—I8

Delhi Technological
UUUUUUUUUU

Example: Computing D) from D(2)

0 3 7 147
15 0 4 11
11 co 0 7
4 7 12 0

With D(2) given earlier and the recursive formula,

—

L

O 3 7 14
15 0 4 11
11 14 0O 7

4 7 11 O

D) gives the distances between any pair of vertices.

TR

Delhi .
IIIIIIIIII

The Algorithm for Computing D("—1)

form € 1ton-1
do fori< 1ton
do forj<1ton
do min € ©
fork< 1ton
do new & d§" Y +Wy
if (new < min)
then min < new
< min

(m)
d%-j

Comments on Solution

e Algorithm uses ©(n3) space; how can this be
reduced down to © (n?)?

e How can we extract the actual shortest paths from
the solution?

e Running time O(n%), much worse than the solu-
tion using Dijkstra’s algorithm. Can we improve
this?

TR

Delhi Technological
UUUUUUUUUU

Repeated Squaring

Observe that we are only interested to find D(”_l), all
others D*, 1 < i < n — 2 are only auxiliary. Further-
more, since the graph does not have negative cycle,
we have D("—1) = Di foralli > n.

. R 2(logz 7]
In particular, this implies that D() = p(n—1)

(v521)

We can calculate D using ‘“repeated squar-

Ing” to find

p®@ p@® p® pl2eszm)

00
Delhi Technological
IIIIIIIIII

Repeated Squaring

We use the recurrence relation:

e Bottom: D(1) = [w@-ﬂ, the weight matrix.

e For s > 1 compute D(29) using

= mil

d§25) in
J 1<k<n

Given this relation we can calculate D (2'&) from D(zz_l)
in O(n3) time. We can therefore calculate all of

D(z), D(4), D(S), L D(Qﬂogg-ﬂ) _ D(n)

in O(n3logn) time, improving our running time.

200
Delhi Technological
IIIIIIIIII

The Floyd-Warshall Algorithm

Step 1 : Decomposition

Definition: The vertices vy, v3,...,v;_q1 are called the
intermediate vertices of the path p = (v1,vp,...,v;_1, ;).

o Let dg?) be the length of the shortest path from
to 5 such that all intermediate vertices on the path
(if any) areinset {1,2,...,k}.

dg‘)) s set to be w4, I.e., no intermediate vertex.

Let D) be the n x n matrix [dg")].

e Claim: dg") Is the distance from ¢ to 5. So our aim

Is to compute D).

e Subproblems: compute D) for | = 0,1,---,n.

Step2: Structure of shortest path

Observation 1: A shortest path does not contain the
same vertex twice. Proof: A path containing the
same vertex twice contains a cycle. Removing cycle
gives a shorter path.

Step2: Structure of shortest path

Observation 2: For a shortest path from 2 to 5 such
that any intermediate vertices on the path are chosen
fromtheset{1,2,...,k}, there are two possibilities:

1. k is not a vertex on the path,
The shortest such path has length dg-“_l).
2. k is a vertex on the path.

(k—1) (k—1)
The shortest such path has length d + dkj .

Step2: Structure of shortest path

Consider a shortest path from ¢ to 5 containing the
vertex k. It consists of a subpath from 2 to £ and a
subpath from k to ;.

Each subpath can only contain intermediate vertices
in{1,....,k — 1}, and must be as short as possible,
namely they have lengths d(k L) and d(k 1)

Hence the path has length d(k L) -+ d(k 1)

Combining the two cases we get

(k):mm{ (f D gk 1)+d(k 1)}

00
Delhi Technological
IIIIIIIIII

Step 3: the Bottom-up Computation

o Bottom: D(O) = [w;.], the weight matrix.

e Compute D) from D(¥—1) using
19— (s D 1)

fork=1,...,n.

The Floyd-Warshall Algorithm: Version 1

Floyd-Warshall(w, n)
{ fori=1tondo initialize
fory = 1ton do
{ DO, 5] = wli, 4];
pred|i, j| = nil;

}

fork =1tondo dynamic programming
fori: = 1 ton do
fory = 1ton do
it (d5= Vi, k] 4 d*E= DIk, 5] < dP)[4, 5])
{dP[i, j] = dF=DI[i, k] + dF= D[k, 51;
pred[i, j] = k;}
else d(F)[i, j] = k=D, 4];
return d(™[1..n,1..n];

} DTU

BEY]
Delhi Technological
IIIIIIIIII

Comments on the Floyd-Warshall Algorithm

e The algorithm’s running time is clearly @(n3).

e The predecessor pointer pred[i, j] can be used
to extract the final path (see later).

e Problem: the algorithm uses ©(n3) space.
It is possible to reduce this down to ©(n?) space
by keeping only one matrix instead of n.

Algorithm is on next page. Convince yourself that
It works.

TR

Delhi Technological
UUUUUUUUUU

The Floyd-Warshall Algorithm: Version 2

Floyd-Warshall(w, n)
{ fori =1tondo initialize
for) = 1ton do
{ dli, j] = wli, j];
pred[i, 7] = nil;

}

fork = 1tondo dynamic programming
fori = 1tondo
fory = 1ton do
if (dli, k] + dlk, j] < dli, 5])
{d[i, j] = d[i, k] + d[k, 51;
pred[i, j] = k;}
returnd[1l..n,1..n];

} DTU

BEY]
Delhi Technological
IIIIIIIIII

Extracting the Shortest

The predecessor pointers pred|i, j| can be used to
extract the final path. The idea Is as follows.

aths

Whenever we discover that the shortest path from
to 5 passes through an intermediate vertex k, we set
pred|i, j] = k.

If the shortest path does not pass through any inter-
mediate vertex, then pred|i, j] = nil.

XX
Delhi Technological
IIIIIIIIII

Extracting the Shortest Pat

To find the shortest path from i to 5, we consult pred|i, j].
If it is nil, then the shortest path is just the edge (i, 7).
Otherwise, we recursively compute the shortest path
from i to pred|i, 7] and the shortest path from pred|i, 7]
{0 .

The Algorithm for Extracting the Shortest Paths

Path(z, 7)
{
if (pred|i, j] = nil) single edge
output (7, 5);
else compute the two parts of the path
{
Path(z, pred|i, j]);
Path(pred|i, j], 7);

Backtracking

A backtracking algorithm tries to build a solution to a
computational problem incrementally.

* Suppose you have to make a series of decisions,
among various choices, where

= You don’t have enough information to know what to
choose

= Each decision leads to a new set of choices
= Some sequence of choices (possibly more than one)
may be a solution to your problem
» Backtracking 1s a methodical way of trying out
various sequences of decisions, until you find one
that “works” DTU

BEY)
Delhi Technological
IIIIIIIIII

Backtracking

* Is used to solve problems for which a sequence of
objects 1s to be selected from a set such that the
sequence satisfies some constraint

 Traverses the state space using a depth-first search
with pruning

Backtracking

» Performs a depth-first traversal of a tree

» Continues until 1t reaches a node that i1s non-viable or
non-promising

» Prunes the sub tree rooted at this node and continues
the depth-first traversal of the tree

Solving a maze

« (Given a maze, find a path from
start to finish

« At each intersection, you have
to decide between three or
fewer choices:
= (5o straight
o Go left
= (Go right

* You don’t have enough
information to choose correctly

« Each choice leads to another
set of choices

* One or more sequences of
choices may (or may not) lead
to a solution.

* Many types of maze problem
can be solved with
backtracking

TR

Delhi Technological
UUUUUUUUUU

Backtracking

dead end

Q dead end
/ dead end
/ <
? > ?
\ / dead end

success!

The Backtracking Methoc

A given problem has a set of constraints and
possibly an objective function

« The solution optimizes an objective function,
and/or is feasible.

* We can represent the solution space for the
problem using a state space tree
s The root of the tree represents 0 choices,
= Nodes at depth 1 represent first choice
= Nodes at depth 2 represent the second choice, etc.

o In this tree a path from a root to a leaf represents a
candidate solution

Sum of subsets

- Problem: Given n positive integers w, ... w,_and

a positive integer S. Find all subsets of w, ... w
that sum to S.

- Example:
n=3, S=6, and w,=2, w,=4, w,=6

n

- Solutions:
{2,4} and {6}

* We will assume a binary state space tree.

* The nodes at depth 1 are for including (yes, no)
item 1, the nodes at depth 2 are for item 2, etc.

 The left branch includes w;, and the right branch
excludes w,.

* The nodes contain the sum of the weights included
so far

yum of subset Pro
State SpaceTree for 3 items

ye

o

0
yesi %o YGS; 0 yes

The sum of the included integers is stored at the node.

A Depth First Search solution

* Problems can be solved using depth first search of
the (implicit) state space tree.

« Each node will save its depth and its (possibly
partial) current solution

« DFS can check whether node v is a leaf.

o If it is a leaf then check if the current solution
satisfies the constraints

s Code can be added to find the optimal solution

XX
Delhi Technological
IIIIIIIIII

A DFS solution

* Such a DFS algorithm will be very slow.

* It does not check for every solution state (node)
whether a solution has been reached, or whether a
partial solution can lead to a feasible solution

 Is there a more efficient solution?

Backtracking solution

- Definition: We call a node nonpromising if it
cannot lead to a feasible (or optimal) solution,
otherwise it Is promising

- Main idea: Backtracking consists of doing a
DFS of the state space tree, checking whether each
node is promising and if the node is nonpromising
backtracking to the node’s parent

Backtracking solution

« The state space tree consisting of expanded nodes
only is called the pruned state space tree

» The following slide shows the pruned state space
tree for the sum of subsets example

* There are only 15 nodes in the pruned state space
tree

» The full state space tree has 31 nodes

A Pruned State Space Tree (

Delhi Technological
UUUUUUUUUU

Backtracking algorithm

void checknode (node v) {
node u
if (promising (v))
if (aSolutionAt(v))
write the solution
else /lexpand the node
for (each child u of v)
checknode (u)

Checknode

e Checknode uses the functions:

o promising(v) which checks that the partial solution
represented by v can lead to the required solution

o aSolutionAt(v) which checks whether the partial
solution represented by node v solves the problem.

Sum of subsets — when is a node “promising’’?

 Consider a node at depth 1

« weightSoFar = weight of node, 1.e., sum of numbers
included 1n partial solution node represents

* totalPossibleLeft = weight of the remaining items
1+1 to n (for a node at depth 1)

* A node at depth 1 1s non-promising
if (weightSoFar + totalPossibleLeft < S)
or (weightSoFar + w[i+1]>S)
» To be able to use this “promising function” the w,
must be sorted 1in non-decreasing order

XX
Delhi Technological
IIIIIIIIII

A Pruned State Spa

X - backtrack

Nodes numbered in “call” order

Delhi Technological
UUUUUUUUUU

sumOfSubsets (i, weightSoFar, totalPossibleLeft)

1. if (promising (7)) //may lead to solution
2. thenif (weightSoFar ==

3. then print include| 1] to include[i] //found solution
4. else /lexpand the node when weightSoFar < S

3. include [i+ 1] ="yes” //try including

6. sumOfSubsets (i + 1,

weightSoFar + w[i + 1],
totalPossibleLeft - wli + 1])
include [i+ 1] ="no” //try excluding
sumOfSubsets (i + 1, weightSoFar
totalPossibleLeft - wli + 1])

29 5=

boolean promising (i)
1. return (weightSoFar + totalPossibleLeft > S) &&
(weightSoFar == S || weightSoFar + w[i+1]<S5)

Prints all solutions! n
Initial call sumOfSubsets(o, o, Z W)

i=1

TR

Delhi Technological
UNIVERSITY

The 8 Queens Problem

« Given 1s a chess board. A chess board has 8x8 fields.
Is 1t possible to place 8 queens on this board, so that
no two queens can attack each other?

The 8 Queens Problem

 NOTES: A queen can attack horizontally, vertically,
and on both diagonals, so it 1s pretty hard to place
several queens on one board so that they don’t attack
each other.

The n Queens problem:

e The n Queens problem:

 Given is a board of n by n squares. Is it possible to
place n queens (that behave exactly like chess
queens) on this board, without having any one of
them attack any other queen?

« Example: 2 Queens problem 1s not solvable.

QR | |Q Q R
Q Ql Q

QO

Example 2: The 4-queens problem is solvable

Basic idea of solution:

 Start with one queen in the first column, first row.
 Start with another queen in the second column, first row.

* Go down with the second queen until you reach a
permissible situation.

e Advance to the next column, first row, and do the same
thing.

e If you cannot find a permissible situation in one column
and reach the bottom of it, then you have to go back to
the previous column and move one position down there.
(This 1s the backtracking step.)

« If you reach a permissible situation in the last column of
the board, then the problem 1s solved.

* If you have to backtrack BEFORE the first column, then
the problem 1s not solvable.

X
Delhi Technological
UUUUUUUUUU

A slow example:

QQ| ||Q Q Q [Q]Q Q

Q Q Q QQ

iliegal illeeal legal 1illegal 1llegal 1llegal

 cannot go further down 1in row 3. I must backtrack!

Q

Q

However, I cannot go further down 1n
column 2 either. I must backtrack one more
step. DTU

00
Delhi Technological
IIIIIIIIII

v

Now I start again 1n the second column.

DTU

00
Delhi Technological
UNIVERSITY

Q Q QQ| | Q Q-
Q " 1Q
1llegal 1llegal 1llegal backtrack

Q QQl| [Q Q||
Q 1Q
Q Q Q Q 1QQ QQ
lecal 1llegal 1llegal 1llegcal bkt/1ll 1ll/end

At this point I am at the end of the first column. T would
have to backtrack again, but that’s impossible.

so the problem 1s unsolvable.

XX
Delhi Technological
IIIIIIIIII

We will work out a successful example also:

QU Qi+t Qrt QHQF

++++ +QF+ -+

Qt++ Q+H++

++++ ++++ +OQ+H FO+H
++++ ++++ ++++ 4+
1llegal

illegal illegal legal

Qt++ QrQ+ Q+++ QF++

4+ ++++ O

+Q++ ++++ - O
+HQ+ +Q++ +Q+H QO+
1llegal illegal 1llegal 1llegal

FHQF
+QH +QOF

++++ -+

1llegal 1llegal

Q+++

b
b

+QO*

1llegal

Delhi Technological
UUUUUUUUUU

Backtrack to column 2. Then backtrack to
column 1. Then go down 1n column 1.

+Q++ 3 ++++ ++Q+ ++QQ ++Q+F ++Q+
Qr++ ill Q+++ Q+++ QF++ QHQ Q+++
++++ steps ++++ ++H++ 4+ A+ +H4Q
4 +Q++ +Q++ +Q++ +Q+H+ +Q+H
1llegal 11l il legal

I placed 4 queens on a 4x4 board.
Problem solved.

TR

Delhi Technological
UUUUUUUUUU

Are there other solutions? There must be.
due to summetry:

Q

We can continue the program
to find this and other solutions.

Delhi Technological
UUUUUUUUUU

Complexity Classes: P anc

* The P versus NP problem is a major unsolved
problem in computer science.

 Informally, 1t asks whether every problem whose
solution can be quickly verified by a computer can
also be quickly solved by a computer.

e The informal term quickly used above means the
existence of an algorithm for the task that runs
in polynomial time.

P and NP

* The general class of questions for which some
algorithm can provide an answer 1in polynomial time
1s called "class P" or just "P".

« For some questions, there 1s no known way to find an
answer quickly, but if one 1s provided with
information showing what the answer 1s, it may be
possible to verify the answer quickly.

 The class of questions for which an answer can be
verified in polynomial time 1s called NP.

NP:Example

TR

Consider the subset sum problem, an example of a problem
that 1s easy to verify, but whose answer may be difficult to
compute.

Given a set of 1ntegers, does some nonempty subset of them
sum to 07

For instance, does a subset of the set {-2, =3, 15, 14, 7,
—10} add up to 0?

The answer "yes, because{-2, -3, —10, 15} add up to zero"
can be quickly verified with three additions.

However, there 1s no known algorithm to find such a subset in
polynomial time (there 1s one, however, in exponential time,
which consists of 2"-1 tries), and indeed such an algorithm
cannot exist if the two complexity classes are not the same;
hence this problem 1s in NP (quickly checkable) but not
necessarily in P (quickly solvable).

Delhi Technological
UUUUUUUUUU

« An answer to the P = NP question would determine
whether problems that can be verified in polynomial
time, like the subset-sum problem, can also be solved
in polynomial time.

o If 1t turned out that P does not equal NP, it would
mean that there are problems in NP (such as NP-
complete problems) that are harder to compute than
to verify: they could not be solved in polynomial
time, but the answer could be verified in polynomial
time.

X
Delhi Technological
UUUUUUUUUU

NP Complete and NP Harc

* To attack the P = NP question the concept of NP-
completeness 1s very useful.

« NP-complete problems are a set of problems to which
any other NP-problem can be reduced in polynomial
time, and whose solution may still be verified in
polynomial time.

 Informally, an NP-complete problem is at least as
"tough" as any other problem in NP.

« NP-hard problems are those at least as hard as NP-
complete problems, 1.e., all NP-problems can be
reduced (in polynomial time) to them. NP-hard
problems need not be in NP, 1.e., they need not have
solutions verifiable in polynomial time.

X
Delhi Technological
UUUUUUUUUU

| | | P=HP = |
| | M- |||.I|I:I.I: |

F = NF F= NF

Euler diagram for P, NP, NP-complete, and
NP-hard set of problems P_T U,

 For instance, the boolean satisfiability
problem 1s NP-complete.

* So any 1nstance of any problem in NP can be
transformed mechanically into an instance of the
boolean satisfiability problem in polynomial time.

* The boolean satisfiability problem 1s one of many
such NP-complete problems. If any NP-complete
problem is in P, then it would follow that P = NP.

e Unfortunately, many important problems have been
shown to be NP-complete, and as of 2012 not a
single fast algorithm for any of them is known.

X
Delhi Technological
UUUUUUUUUU

NP Hard problems

« An example of an NP-hard problem i1s the
decision subset sum problem, which 1s this: given a
set of integers, does any non-empty subset of them
add up to zero?

 That 1s a decision problem, and happens to be NP-
complete.

» Another example of an NP-hard problem 1s the
optimization problem of finding the least-cost cyclic
route through all nodes of a weighted graph.

 This 1s commonly known as the traveling salesman
problem.

TR

Delhi Technological
UUUUUUUUUU

