
Review of Elementary Data

Structures Structures (Part 1)

Manoj Kumar

DTU, Delhi

What is data structure?

�In computer science, a data structure is a particular

way of storing and organizing data in a computer so

that it can be used efficiently.

�A data structure is a way of organizing data that

considers not only the items stored, but also theirconsiders not only the items stored, but also their

relationship to each other. Advance knowledge about

the relationship between data items allows designing

of efficient algorithms for the manipulation of data.

Data structures

�Data structures provide a means to manage huge

amounts of data efficiently.

�Usually, efficient data structures are a key to

designing efficient algorithms.

�Some formal design methods and programming�Some formal design methods and programming

languages emphasize data structures, rather than

algorithms, as the key organizing factor in software

design.

ARRAYS

�A collection of data elements in which

� all elements are of the same data type, hence

homogeneous data

� An array of students’ marks

� An array of students’ names

� An array of objects (OOP perspective!)

� elements (or their references) are stored at contiguous/

consecutive memory locations

� Array is a static data structure

� An array cannot grow or shrink during program

execution – its size is fixed

ARRAY: Basic Concepts

�Array name (data)

� Index/subscript (0...9)

� The slots are numbered sequentially starting

at zero (Java, C, C++)

� If there are N slots in an array, the index� If there are N slots in an array, the index

will be 0 through N-1

� Array length = N = 10

� Array size = N x Size of an element

= 10x2 = 20 bytes

� Direct access to an element

ARRAY: Memory representation

�Starting address of array: 10266 (base address)

�Size of each element: 2 (for integer array)

�Length of array : n=6

45

52

23

54

Address

10266

10268

10270

10272

Value

A[0]

A[1]

A[2]

A[3]

�Total memory occupied by array: 6x2=12 bytes.

�Address of A[0]: 10266

�Address of A[1]: 10268

�Address of A[i]: base address + i * size of element = 10266 + i*2

12

6

10272

10274

10276

A[3]

A[4]

A[5]

ARRAY: 2D array

C
o
l

0

C
o
l

1

C
o
l

2

… C
o
l

n
2
-1

Row 0 A[0][0] A[0][1] A[0][2] … A[0][n2-1]

Row 1

…

Row n1-1

A[1][0] A[1][1] A[1][2] … A[1][n2-1]

… … … … …

A[n1-1][0] A[n1-1][1] A[n1-1][2] … A[n1-1][n2-1]

A[n1][n2]

ARRAY: 2D array representation (in Memory)

25 28 67 89

11 34 65 78

62 21 43 51

25

28

67

89

11

Address

10266

10268

10270

10272

10274

A[0][0]

A[0][1]

A[0][2]

A[0][3]

A[1][0]

R
o
w

-
0

25

11

62

28

34

Address

10266

10268

10270

10272

10274

A[0][0]

A[1][0]

A[2][0]

A[0][1]

A[1][1]

C
o
l-

0
C

o
l-

1

Array A[3][4]

11

34

65

78

62

21

43

51

10274

10276

10278

10280

10282

10284

10286

10288

A[1][0]

A[1][1]

A[1][2]

A[1][3]

A[2][0]

A[2][1]

A[2][2]

A[2][3]

Row-major Form

R
o
w

-1
R

o
w

-2

34

21

67

65

43

89

78

51

10274

10276

10278

10280

10282

10284

10286

10288

A[1][1]

A[2][1]

A[0][2]

A[1][2]

A[2][2]

A[0][3]

A[1][3]

A[2][3]

Column-major Form

C
o
l

C
o
l-

2
C

o
l-

3

ARRAY: 2D array representation (in Memory)

25 28 67 89

11 34 65 78

62 21 43 51

25

28

67

89

11

Address

10266

10268

10270

10272

10274

A[0][0]

A[0][1]

A[0][2]

A[0][3]

A[1][0]
�Starting address of Array = Address of A[0][0] := 10266 (Base

R
o
w

-
0Row-0

Row-1

Row 2

C
o
l-

0

C
o
l-

1

C
o
l-

2

C
o
l-

3
11

34

65

78

62

21

43

51

10274

10276

10278

10280

10282

10284

10286

10288

A[1][0]

A[1][1]

A[1][2]

A[1][3]

A[2][0]

A[2][1]

A[2][2]

A[2][3]

Address)

�Array dimension: n1* n2 := 3*4

�Size of one element = s=2 bytes (integer array)

�Address of A[i][j] =

base address + (number of elements before A[i][j]) * size of

element)

�i.e. Address of A[i][j] = base address + (i * n2 + j) * s

�Example: Address of A[1][3] = 10266 + (1 * 4 + 3) * 2

= 10266 + 14

= 10280 Row-major Form

R
o
w

-1
R

o
w

-2

ARRAY: Column-major form

�Address of A[i][j] =

▫ base address + number of elements before A[i][j]) * size of

element

�i.e. Address of A[i][j] = base address + (j * n1 + i) * s�i.e. Address of A[i][j] = base address + (j * n1 + i) * s

ARRAY: array representation

�Let Array is m-dimensional :A[n1][n2]…[nm]

�Starting address of Array = Base Address

�Array dimension: n1*n2 * …* nm

�Size of one element = s

�Address of A[i1][i2]…[im] =

base address + (number of elements before

A[i1][i2]…[im]) * size of element)

= base address + (i1 * n2*n3*…*nm + i2* n3 * n4 *… *nm +

…+ im-1 * nm + im) * s

ARRAY: Operations

�Indexing: inspect or update an element using its index.
Performance is very fast O(1)
� randomNumber = numbers[5];

� numbers[20000] = 100;

�Insertion: add an element at certain index
� Start: very slow O(n) because of shift

�End : very fast O(1) because no need to shift�End : very fast O(1) because no need to shift

�Removal: remove an element at certain index
� Start: very slow O(n) because of shift

�End : very fast O(1) because no need to shift

�Search: performance depends on algorithm
� 1) Linear: slow O(n) 2) binary : O(log n)

�Sort: performance depends on algorithm
� 1) Bubble: slow O(n2) 2) Selection: slow O(n2)

� 3) Insertion: slow O(n2) 4) Merge : O (n log n)

Unsorted Array: Operations

�Find (search) an element
�O(N) Linear search

�Find the smallest/largest element
�O(N)

�Insert an element (at end)
�O(1)�O(1)

�Insert an element (at start)
�O(N)

�Remove an element (from end)
�O(1)

�Remove an element (from start)
�O(N)

Sorted Array: Operations

�Find (search) an element
�O(lg N) Binary search

�Find the smallest/largest element
�O(1)

�Insert an element (at end)
�O(1)�O(1)

�Insert an element (at start)
�O(N)

�Remove an element (from end)
�O(1)

�Remove an element (from start)
�O(N)

Binary Search Example

7 12 42 59 71 86 104 212

0 1 2 3 4 5 6 7

Looking for 89

midtop bottom

Binary Search Example

7 12 42 59 71 86 104 212

0 1 2 3 4 5 6 7

Looking for 89

midtop bottom

Binary Search Example

7 12 42 59 71 86 104 212

0 1 2 3 4 5 6 7

Looking for 89

mid
top

bottom

Binary Search Example

7 12 42 59 71 86 104 212

0 1 2 3 4 5 6 7

top>bottom: STOP
89 not found – 3 comparisons

3 = Log2(8)

topbottom

Binary Search Big-O

• An element can be found by comparing and

cutting the work in half.

▫ We cut work in ½ each time

▫ How many times can we cut in half?

▫ Log2N▫ Log2N

• Thus binary search is O(Lg N).

Recall
LB

log2 N = k • log10 N

k = 0.30103...

So: O(lg N) = O(log N)

Stacks & Queues

�Stacks and Queues are two data structures that allow

insertions and deletions operations only at the

beginning or the end of the list, not in the middle.

�A stack is a linear structure in which items may be

added or removed only at one end.added or removed only at one end.

�A queue is a linear structure in which element may be

inserted at one end called the rear, and the deleted at

the other end called the front.

Stacks

• A stack is a list of elements in which an element may be

inserted or deleted only at one end, called the top of the stack.

�Stacks are also called last-in first-out (LIFO) lists.

�Examples:

�a stack of dishes,�a stack of dishes,

�a stack of coins

�a stack of folded towels.

Stacks

• Stack has many important applications in computer

science.

• The notion of recursion is fundamental in computer

science.

• One way of simulating recursion is by means of stack • One way of simulating recursion is by means of stack

structure.

�There are two kinds of stack data structure -

a) static, i.e. they have a fixed size, and are implemented

as arrays.

Static and Dynamic Stacks

as arrays.

b) dynamic, i.e. they grow in size as needed, and

implemented as linked lists.

Stack operations

�Special terminology is used for two basic operation
associated with stacks:

�"Push" is the term used to insert an element into a stack.

� "Pop" is the term used to delete an element from a stack.

�Apart from these operations, we could perform these
operations on stack: operations on stack:

�Create a stack

�Check whether a stack is empty,

�Check whether a stack is full

�Initialize a stack

�Read a stack top

�Print the entire stack.

Stack: using array

• Suppose that following 6 elements are pushed, in order, onto an empty

stack: AAA, BBB, CCC, DDD, EEE, FFF

0
1
22
3
4
5
.
.
.

N-1

0 1 2 3 4 5 … N-1

MAX_ITEMS=N

Full and Empty Stacks

AAA

BBB

CCC

DDD

EEE

0

1

2

3

4

Full Stack Empty Stack
-1

0

1

2

3

4

Top

EEE

FFF

…

XXX

4

5

…

N-1Top

MAX_ITEMS=N

Stack full condition:
Top ==MAX_ITEMS-1

…

4

5

…

N-1

MAX_ITEMS=N

Stack Empty condition:
Top ==-1

Stack: overflow & underflow

�Overflow

�When we are adding a new element, first, we must test

whether there is a free space in the stack for the new

item; if not, then we have the condition known as

overflow.

�Underflow

�While removing an element from stack, first test

whether there is an element in the stack to be deleted; if

not; then we have the condition known as underflow.

Stack Specification

�Definitions: (provided by the user)

�MAX_ITEMS: Max number of items that might be on the

stack

�itemType: Data type of the items on the stack

�Operations�Operations

�Initialize()

�Boolean isEmpty()

�Boolean isFull()

�Push (itemType newItem)

�itemType Pop ()

Push (ItemType newItem)

�Function: Adds newItem to the top of the stack.

�Preconditions: Stack has been initialized and is not

full.

�Postconditions: newItem is at the top of the stack.

Push (newItem)
{

IF (isFull()) THEN
print “STACK

OVERFLOW”;
ELSE
{

top=top+1;
Stack[top]=newItem;

}
}

44

23

17

67

28

top

6

5

4

3

2

1

0

44

23

17

67

28

top
55

6

5

4

3

2

1

0

itemType Pop ()

�Function: Removes topItem from stack and returns it.

�Preconditions: Stack has been initialized and is not empty.

�Postconditions: Top element has been removed from stack and

returned.

itemType Pop()
{{

IF (isEmpty()) THN
print “ STACK UNDERFLOW”;

ELSE
{

topItem=Stack[top];
top=top-1;
return(topItem);

}
}

44

23

17

67

28

top

6

5

4

3

2

1

0

44

23

17

67

28

top
55

6

5

4

3

2

1

0

Ceate a stack

itemType Stack[MAX_ITEMS]
int top;

Initialize a stackInitialize a stack

Initialize()
{

top = -1;
}

isEmpty()

Boolean isEmpty()
{

IF (top == -1) THEN
return(TRUE);

ELSEELSE
return(FALSE);

}

isFull()

Boolean isFull()
{

IF (top == MAX_ITEMS-1) THEN
return(TRUE);

ELSEELSE
return(FALSE);

}

Stack class

class Stack {

public:

Stack(int size = 10); // constructor

~Stack() { delete [] values; } // destructor

bool IsEmpty() { return top == -1; }

bool IsFull() { return top == maxTop; }

double Top();double Top();

void Push(const double x);

double Pop();

void DisplayStack();

private:

int maxTop; // max stack size = size - 1

int top; // current top of stack

double* values; // element array

};

Create Stack

• The constructor of Stack
▫ Allocate a stack array of size. By default,
size = 10.

▫ When the stack is full, top will have its maximum
value, i.e. size – 1.

▫ Initially top is set to -1. It means the stack is empty.▫ Initially top is set to -1. It means the stack is empty.

Stack::Stack(int size=10) {

maxTop = size - 1;

values = new double[size];

top = -1;

}

Although the constructor dynamically allocates the stack array, the stack is
still static. The size is fixed after the initialization.

Push Stack

• void Push(const double x);
▫ Push an element onto the stack

▫ If the stack is full, print the error information.

▫ Note top always represents the index of the top
element. After pushing an element, increment top.element. After pushing an element, increment top.

void Stack::Push(const double x) {

if (IsFull())

cout << "Error: the stack is full." << endl;

else

values[++top] = x;

}

Pop Stack

• double Pop()
▫ Pop and return the element at the top of the stack

▫ If the stack is empty, print the error information. (In
this case, the return value is useless.)

▫ Don’t forgot to decrement top

double Stack::Pop() {

if (IsEmpty()) {

cout << "Error: the stack is empty." << endl;

return -1;

}

else {

return values[top--];

}

}

Stacks: Sharing space

• Two stacks sharing space of single array

24 54 32 … … 18 12

Stack1

Top1 Top2

Stack2

0 1 2 … … … N-2 N-1

Top1 Top2

32 54 24 12 18 …

Stack1
Top1 Top2

0

1 …

(N
/2

)-
3

(N
/2

)-
2

(N
/2

)-
1

(N
/2

)

(N
/2

)+
1

N
-2

N
-1

OPTION 1

OPTION 2

Stack2

Which option is better ?

Queue using two stacks

45

23

44

15

84

Insert in Stack 1

Remove from Stack 2

44

87

21

55

84

34

29

90

Stack 1 Stack 2

What if Stack2 is empty and request for dequeue?
What if Stack1 is full and request for enqueue?

Queues

42

Queue Basics

�A queue is a sequence of data elements

�In the sequence

�Items can be removed only at the front

�Items can be added only at the other end, the rear

Array-based Queue

• Use an array of size N in a circular fashion

• Two variables keep track of the front and rear
f index of the front element

r index immediately past the rear element

• Array location r is kept empty

Q

0 1 2 rf

Q

0 1 2 fr

wrapped-around configuration

normal configuration

Empty and Full Queue (wrapper-around configuration)

0 1 2 3 4 5 6 7 8 ….. N-1

f r

Empty Queue

Condition : f == r
f r

0 1 2 3 4 5 6 7 8 ….. N-1

r f

Full Queue

Condition : f == (r+1)%N

Queue operations

�Special terminology is used for two basic operation
associated with queues:

�"enqueue" is the term used to insert an element at the end
of the queue.

� “dequeue" is the term used to remove an element at the
front of the queue.front of the queue.

�Apart from these operations, we could perform these
operations on queue:
�Create a queue

�Check whether a queue is empty,

�Check whether a queue is full

�Initialize a queue

�Read front element of the queue

�Print the entire queue.

Queue: enqueue : example

0 1 2 3 4 5 6 7 8 ….. N-1

f r

Empty Queue

After adding 23 : enqueue(23)

23

0 1 2 3 4 5 6 7 8 ….. N-1

f r

23

enqueue(itemType newItem)
{

if (isFull())
print “queue is Full”;

else
{

Queue[r]=newItem;
r=(r+1) mod MAX_ITEMS;

}
}

Queue: enqueue: example…

0 1 2 3 4 5 6 7 8 ….. N-1

f r

After adding 44 : enqueue(44)

23 44

After adding 12, 35, 27, 65, 89

23 44 12 35 27 65 89

0 1 2 3 4 5 6 7 8 ….. N-1

f r

23 44 12 35 27 65 89

enqueue(itemType newItem)
{

if (isFull())
print “queue is Full”;

else
{

Queue[r]=newItem;
r=(r+1) mod MAX_ITEMS;

}
}

Queue: dequeue: example…

0 1 2 3 4 5 6 7 8 ….. N-1

f r

After removing one element (23) : dequeue()

44 12 35 27 65 89

0 1 2 3 4 5 6 7 8 ….. N-1

f r

After removing next element (44) : dequeue()

12 35 27 65 89

Queue: dequeue operation

itemType dequeue()
{

IF (isEmpty()) THEN
print “queue is Empty”;

ELSEELSE
{

frontItem=Queue[f];
f=(f+1) mod MAX_ITEMS;
return(frontItem);

}
}

Queue creation

itemType Queue[MAX_ITEMS];

int f, r;

Queue initializationQueue initialization

f = 0;

r = 0;

Queue: isEmpty(), isFull()
Boolean isEmpty()
{

IF (f == r) THEN
return(TRUE);

ELSE
return(FALSE);

}

Boolean isFull()
{

IF (f == (r + 1) mod MAX_ITEMS) THEN
return(TRUE);

ELSE
return(FALSE);

}

Linked Lists

Linked list

�Alternate approach to maintaining an array of

elements

�Rather than allocating one large group of elements,

allocate elements as needed

�Q: how do we know what is part of the array?�Q: how do we know what is part of the array?

�A: have the elements keep track of each other

�use pointers to connect the elements together as a LIST of

things

�Allows efficient insertion and removal, sequential

access

Limitations of array

�An array has a limited number of elements

�routines inserting a new value have to check that there is

room

�Can partially solve this problem by reallocating the

array as needed (how much memory to add?)array as needed (how much memory to add?)

�adding one element at a time could be costly

�one approach - double the current size of the array

�A better approach: use a Linked List

Dynamically Allocating Space for Elements

�Allocate elements one at a time as needed, have

each element keep track of the next element

�Result is referred to as linked list of elements,

track next element with a pointer

Array of Elements in Memory

Linked List

Jane AnneBob

Jane Anne Bob

Linked List Notes

�Need way to indicate end of list (NULL pointer)

�Need to know where list starts (first element)

�Each element needs pointer to next element (its link)

�Need way to allocate new element (use malloc)

�Need way to return element not needed any more

(use free)

�Divide element into data and pointer

Linked list concept

�Here we see a basic linked list.

�There are 4 elements in the list, each one with a data
portion and a link portion.

�pHead is a pointer to the head of the list. Typically,
the name given to this pointer is the name of the list.

�Note the last element of the list. The X in the link
portion denotes a NULL pointer (i.e., the end of the
list).

Nodes

�The elements in a linked list are traditionally called nodes.

�A node in a linked list is a structure that has at least 2
fields: one contains the data, the other contains the
address of the next element in the list.

�A node can contain data of any type, including objects of
other classes.other classes.

Nodes

�The nodes that make up a linked list are self-

referential structures.

�A self-referential structure is one in which each

instance of the structure contains a pointer to

another instance of the same structural type.another instance of the same structural type.

Linked list concept

• Data is stored in a linked list dynamically – each
node is created as required.

• Nodes of linked lists are not necessarily stored
contiguously in memory (as in an array).

• Although lists of data can be stored in arrays, linked• Although lists of data can be stored in arrays, linked
lists provide several advantages.

Linked list concept

Advantage 1: Dynamic

�A linked list is appropriate when the number of data
elements to be stored in the list is unknown.

�Because linked lists are dynamic, their size can
grow or shrink to accommodate the actual numbergrow or shrink to accommodate the actual number
of elements in the list.

Linked list concept

�The size of a “conventional” C++ array, however,
cannot be altered, because the array size is fixed at
compile time.

�Also, arrays can become full (i.e., all elements of
the array are occupied). the array are occupied).

�A linked list is full only when the computer runs
out of memory in which to store nodes.

Linked list concept

Advantage 2: Easy Insertions and Deletions

�Although arrays are easy to implement and use,

they can be quite inefficient when sequenced data

needs to be inserted or deleted.

�With arrays, it is more difficult to rearrange data.�With arrays, it is more difficult to rearrange data.

�However, the linked list structure allows us to

easily insert and delete items from a list.

Linked list concept

�Unfortunately, linked lists are not without their

drawbacks.

�For example, we can perform efficient searches on

arrays (e.g., binary search), but this is not practical

with a linked list.with a linked list.

Singly Linked list: Insertion at end

45 23 87 55
pStart

NULL

Before Insertion

66

Node to be inserted

q

p

Node to be inserted

45 23 87 55
pStart

NULL
66

�Only two pointers are modified
�Fixed amount of work done.
�O(1) complexity

After Insertion p

q

Operations
p->next = q;
q->next = NULL;

Linked list: Insertion at start

45 23 87 55
pStart

NULL

Before Insertion

66

Node to be inserted

q

45 23 87 55pStart

66
�Only two pointers are modified
�Fixed amount of work done.
�O(1) complexity

After Insertion

q

q->next = pStart;
pStart = q;

NULL

Linked list: Insertion in middle

45 23 87 55
pStart

NULL

Before Insertion: request to insert after node pointed by p

66

Node to be inserted

q

p

45 23 87 55pStart

66

�Only two pointers are modified
�Fixed amount of work done.
�O(1) complexity

After Insertion

q

q->next = p->next;
p->next = q;

NULL

p

Node: declaration in C

rollno name marks next

typedef struct node //defining node structure
{{

int rollno;
char name[30];
int marks;
struct node *next;

} ;
struct node *pStart, *p, * q ; // creating pointers variacles
q = (struct node*) (malloc(sizeof(struct node)));

// creating a new node pointed by q

Concept of head node

45 23 87 55
pStart

NULL

45 23 87 55 NULLptr

Linked list without head node

Linked list with head node

45 23 87 55 NULLptr

head

Linked list with head node storing number of nodes in linked list
and pointers to first and last node

45 23 87 55 NULLStart
_ptr

head

End_
ptr

count

Circular linked list

• Next pointer of last node points to first node of the

list

45 23 87 55ptr 45 23 87 55ptr

head

Stack using linked list

70

60

top

G
r
o
w
th
 o
f
s
ta
c
k

top NULL

Empty Stack

50

40

NULL

G
r
o
w
th
 o
f
s
ta
c
k

Stack using linked list : PUSH operation

70top

80q New node

70

top
80q New node

OPERATIONS
q->next = top;
top = q;

60

50

40

NULL

60

50

40

NULL

top = q;

Stack using linked list : POP operation

70top

80q

70

top 80 New to be
removed

OPERATIONS
If (top != NULL)
{

60

50

40

NULL

60

50

40

NULL

{
q = top;
top = top->next;

}

Queue using linked list

45 23 87 55

front

NULL

rear

front rear

NULLNULL
Empty queue:
front = rear = NULL

Queue using linked list: enqueue operation

45 23 87 55

front

NULL

rear

60q

New node

45 23 87 55

front
NULL

rear

60q

OPERATIONS
If (rear != NULL)
{

rear ->next = q;
rear = q;

}
else // empty queue

rear = q; front = q;

Queue using linked list: dequeue operation

45 23 87 55

front

NULL

rear

60

q

Node to be removed

4545
23 87 55

front

NULL

rear

60

q

OPERATIONS
q = front;
If (front != NULL)
{

front = front ->next;
if (front == NULL) rear = NULL;

}
return (q);

Doubly Linked Lists (DLLs)

pStart

46 47 48 49
NULL

NULL

data nextprev

Node structure

Circular Doubly Linked List

pStart

46 47 48 49

data nextprev

Node structure

Doubly Linked List: Insertion

pStart

44 46 48 50

47

p

Insert new node q after node p

OPERATIONS
q->next = p->next;
q->prev = p;
p->next->prev = q;

q

pStart

44 46 48 50

47

q

p

p->next->prev = q;
p->next = q;

Doubly Linked List: Deletion

pStart

44 46 48 50

p
Delete node pointed by p

OPERATIONS
p->next ->prev = p->prev;
p->prev->next = p->next;

free(p); //release memory

pStart

44 46

48

50

p

DLLs compared with SLLs

�Advantages:

�Can be traversed in either direction (may be essential

for some programs)

�Some operations, such as deletion and inserting before

a node, become easiera node, become easier

�Disadvantages:

�Requires more space

�List manipulations are slower (because more links must

be changed)

�Greater chance of having bugs (because more links

must be manipulated)

Linked list Example

• Polynomial representation:

5 12 2 9 4 7 6 5 1 2 12 1

P

c
o
e
f

E
x
p
o

n
e
x
t

5 12 2 9 4 7 6 5 1 2 12 1
NULL

Trees

� All data structures examined so far are linear data

structures.

� Each element in a linear data structure has a clear

predecessor and a clear successor.

� Predecessors and successors may be defined by arrival � Predecessors and successors may be defined by arrival

time or by relative size.

� Trees are used to represent hierarchies of data.

� Any element in a tree may have more than one

successor - called it's children.

Terminology

� Node or vertex - the labeled squares

� Edge -the connecting lines

� In the General tree to the right:

�B is the child of A - A is parent of B

�B and C are siblings

A

CB

�B and C are siblings

�A is the root of the tree

�B and its children (D, E, F) are a subtree of A

� The parent-child relationship is generalized as

ancestor -descendant.

�B is a descendant of A - A is ancestor to B

D E F

Tree: definition

� A General Tree T is a set of one or more nodes such

that T is partitioned into disjoint subsets:

� A single node R - the root

� Sets that are general trees -the subtrees of R.

rootroot

subtree

subtree

Tree example: Linux directory structure

Binary Tree Definition

� A Binary Tree is a set of nodes T such that either:

� T is empty, or

� T is partitioned into three disjoint subsets:

� A single node R -the root

� Two possibly empty sets that are binary trees, called the left and right

subtrees of R.subtrees of R.

� Leaf nodes do not have any children.

� Height of tree: number of levels in tree root

Right
subtree

Left
subtree

Binary tree

�Max no. of nodes in a binary tree of height h

= (2h-1) = N

�Max number of nodes at level i = 2i

�Total number of links = 2xN

�Total non NULL links = N-1�Total non NULL links = N-1

�Total NULL links = N+1

A

B C

GE FD

H I G

Level 0

Level 1

Level 2

Level 3

Binary Tree Definition

� T is a binary tree if either:

� T has no nodes, or

� T is of the form: RRRR

TTTT
LLLL

TTTT
RRRR

where R is a node and

T
L

and T
R

are both

binary trees.

� if R is the root of T then :

� T
L

is the left subtree of R - if it is not null then its

root is the left child of R

� T
R

is the right subtree of R - if it is not null then its

root is the right child of R

Full Binary Trees

� In a full binary tree:

� All nodes have two children except leaf nodes.

� All leaf nodes are located in the lowest level of the tree.

� Height of tree = lg(N)

Complete Binary Trees

� In a complete binary tree:

� All nodes have two children except those in the bottom

two levels.

� The bottom level is filled from left to right.

AA

B C

GE FD

H I G

Skewed Binary Tree

A

B

DD

H

Binary Search Trees

� A binary search tree represents a hierarchy of

elements that are arranged by size:

�For any node n:

�n's value is greater than any value in its left subtree

�n's value is less than any value in its right subtree�n's value is less than any value in its right subtree

F

D I

KE HB

A C G J

Binary Expression Trees

� A binary expression tree represents an arithmetic

expression:

�For any node n:

�if n is a leaf node:

�it must contain an operand.

*

+ -
�it must contain an operand.

�if n is not a leaf node:

�it must contain an operator.

�it must have two subtrees.
This tree represents
the expression:

(a + b) * (c -d) or

a b + c d -*

db ca

Binary Tree Traversals

� A traversal of a binary tree "visits" each node and for

each node:

� Prints (or operates on) the data contained in that node.

� Visits the left subtree of the node.

� Visits the right subtree of the node.� Visits the right subtree of the node.

� Recursive termination occurs when a visited node (or

tree) is null.

� There are three possible traversals of binary trees that

differ only in the order that they perform the 3 basic

operations.

Inorder Traversal

inorder (binTree tree)

{

//performs an inorder traversal of tree

if(tree != null)

{

inorder(left subtree of tree);inorder(left subtree of tree);

print tree's data;

inorder(right subtree of tree);

}

}

Inorder Traversal

inorder(binTree tree){

// inorder traversal of tree

if(tree != null){

inorder(left subtree of tree)

*

+ -

db ca
print tree's data

inorder(right subtree of tree)

}

}

db ca

For this tree produces:

a + b * c - d

Postorder Traversal

postorder(binTree tree){

//performs an postorder traversal of tree

if(tree != null){

postorder(left subtree of tree)

postorder(right subtree of tree)postorder(right subtree of tree)

print tree's data

}

}

Postorder Traversal

postorder(binTree tree){

//postorder traversal of tree

if(tree != null){

postorder(left subtree of tree)

postorder(right subtree of tree)

*

+ -

db capostorder(right subtree of tree)

print tree's data

}

}

db ca

For this tree produces:

a b + c d - *

Preorder Traversal

preorder(binTree tree){

//performs an preorder traversal of tree

if(tree != null){

print tree's data

preorder(left subtree of tree)preorder(left subtree of tree)

preorder(right subtree of tree)

}

}

Preorder Traversal

preorder(binTree tree){

//preorder traversal of tree

if(tree != null){

print tree's data

preorder(left subtree of tree)

*

+ -

db capreorder(left subtree of tree)

preorder(right subtree of tree)

}

}

db ca

For this tree produces:

* + a b - c d

Binary tree: node structure

data rightleft

typedef struct bintree
{

struct bintree *left;
int data;
struct bintree *right;

};

A binary search tree :example

45

6632

756027 35

29 68

72

Binary search tree traversal

45

6632

27 35

29

60 75

6829 68

72

Inorder: 27, 29, 32, 35, 45, 60, 66, 68, 72, 75

Postorder: 29, 27, 35, 32, 60, 72, 68, 75, 66, 45

Preorder: 45, 32, 27, 29, 35, 66, 60, 75, 68, 72

Binary search tree: search

45

6632

27 35

29

60 75

68

>

>

<

>
29 68

72

Search for 72 : 4 comparisons
Search for 74 : 4 comparisons

Search complexity: O(h)

>

Binary search tree: Insertion

45

6632

27 35

29

60 75

68

<

>

<

>

INSERT 30

29 68

72

>

30

Binary search tree: deletion (Case 1)

45

6632

27 35

29

60 75

68

DELTE 29
It is leaf node

Simply search
it and delete

72

45

6632

27 35

29

60 75

68

72

Binary search tree: deletion (Case 2)

45

6632

27 35

29

60 75

68

DELTE 75
It has one subtree

Connect this
subtree to parent
of 75

72

45

6632

27 35

29

60
75

68

72

Binary search tree: deletion (Case 3)

45

6632

27 35

29

60 75

68

72

DELTE 66
It has both subtrees

1. Replace data with
minimum data x of
right subtree of 66.

2. Recursively delete
x from right

Right child

72x from right
subtree of 66.

45

6832

27 35

29

60 75

68

72
Delete
this node
(Case 2)

45

6832

27 35

29

60 75

72

