COs Third Semester Courses MSc Physics

Seme	ster	ш	
Cours	se Code and Course Name	MSPH201: Atomic and Molecular Physics	
Cours	Course Outcomes		
CO1	Gain knowledge of fundame complex system.	entals of atomic physics and its application to the	
CO2	Implement the external pertu materials of optoelectronic i	urbation concerning electric and magnetic fields to nterest.	
CO3	Deal with various advanced molecular spectroscopic techniques used to characterize optoelectronic materials.		
CO4	Predict the behavior of ground and excited electronic states of materials used for light-emitting devices and other sensors.		
CO5	1 0	rea of vibrational, rotational, and electronic ystems responsible for modern-age advanced materials.	

Semest	er	Ш
Course	code and Course Name	MSPH 203: Nuclear and Particle Physics
Course	Outcomes	
C01	To Understand static (basic	c) information about the nucleus and its properties
CO2		nformation and identify missing and contradictory nd particle experimental results
CO3	To analyze the nuclear models by assimilations of experimental observations and propose new models	
CO4	To solve problems by applying concepts, laws, theories of nuclear and particle physics in new situations	
CO5	To understand recent pract	ical application of nucleus and sub nuclear particles

Seme	ster	III
Cours	se code and Course Name	MSPH-207: Fibre and Integrated optics
Cours	se Outcomes	
CO1	To understand and analyse the light guidance in planar waveguides	
CO2	To analyse essentials of an optical fibre communication system and the factors leading to signal degradation in optical fibres leading to the design of low loss optical fibres	
CO3	To engineer the design parameters of low loss fibres in the optical communication window.	
CO4	To identify and evaluate the communication system.	performance of various components of an optical fibre

CO5 To use the gained knowledge of this course to design the minor-research project related activities

Seme	ster	Ш
Cours	se code and Course Name	MSPH-215: Plasma Physics
Cours	se Outcomes	
CO1	the motion of charged part the various type of drift velo	plasma production and diagnostic techniques. Analyze icles in electric and magnetic fields, determine ocities of charged particles moving in electric and er uniform or vary slowly in space and time.
CO2	Derive the expressions for L Electromagnetic waves in ur	angmuir waves, Ion acoustic waves and magnetized plasma. Also derive the dispersion ves, lower hybrid waves, ion-cyclotron waves in
CO3	fields. Also explain in detail	D.C. and A.C. conductivities in presence of magnetic s about Rayleigh Taylor Instability and Weibel ing electron beams, Kelvin Helmholtz Instability, Two DV equation etc.
CO4	Derive the expressions for V	Vlasov equation using kinetic treatment, differentiate netic model, Explain Landau damping and solution of
CO5	Graphene & g-CNT hybrids.	tion and growth of nanoparticles, dust particles, CNTs, Also, role of plasma on CNTFETs and g-FETs. CFELs and Introduction to ITER and Tokamak

Semester Course code and Course Name		III MSPH-217: Characterization Techniques
CO1	Create theoretical and analy characterizations technique	tical skills among students for various structural of materials
CO2		nd various primary characterization techniques for echnological aspect of materials
CO3	To impart the knowledge of micro to nano level structural and spectroscopic characterizations of materials	
CO4	Equip the students with knowledge, principle and design of microscopic techniques and their analysis	
CO5	To impart the knowledge, pr analysis for industrial and so	rinciple of thermal characterization techniques and their ocial applications

COs Fourth Semester Courses MSc Physics

Semes	ster	IV
Cours	se Code and Course Name	MSPH 202: Advanced Semiconductor Devices
Cours	se Outcomes	
CO1	Ability to understand physics of microwaves, semiconductor.	
CO2	Understanding of Fundamental of photonic devices.	
CO3	Understanding and application of memory devices.	
CO4	Highlight applications of microwave, photonic and memory devices.	
CO5	Utilization of knowledge of	physics and fabrication in device application.

Seme	ster	IV
Cours	se Code and Course Name	MSPH 204: Space and Atmospheric Science
Cours	Course Outcomes	
CO1	Explanation ability about va	rious radiation laws and their physical significance.
CO2	Understanding the structure earth.	and properties of different atmospheric layers around
CO3	Deep idea of meteorological instruments and their measuring parameters.	
CO4	Realize various techniques for measuring gaseous pollutants and their impact on human health and climate change.	
CO5	Analyse the radar principles	and wind profiler applications.

Semes	ster	IV	
Cours	e Code and Course Name	MSPH-216: Advanced Functional Materials	
Cours	Course Outcomes		
CO1	Ability to understand crystal, bonding structure of materials		
CO2	Knowledge of synthesis and techniques of material		
CO3	Understanding and application characterization techniques		
CO4	Potential application of functional materials		
CO5	Importance of nanomaterial for society, health and environment		