COs First Semester Courses MSc Physics

Seme	ster	Ι	
Cours	se Code and Course Name	MSPH 101: Mathematical Physics	
Cours	Course Outcomes		
CO1	-	or, power and Laurent series, classify singularities and use the residue theorem to evaluate a contour integral	
CO2	Evaluate integrals of functions or vector-related quantities over curves, surfaces, and domains in two- and three-dimensional space by applying Gauss theorem, Stoke's theorem and Green's theorem.		
CO3	Determine eigenvalues and principles of matrix algebra	eigenvectors and solve eigenvalue problems and apply to linear transformations	
CO4		pplications of special functions and their differential various physical problems such as in quantum	
CO5	0	ups; subgroup, cosets, conjugate classes, invariant o and represent a group in Reducible and irreducible	

Semes	ster	I	
Cours	se Code and Course Name	MSPH 103: Classical Physics	
Cours	Course Outcomes		
CO1	· · · ·	d principles of classical physics and Analyse and apply ewtonian mechanics for complex problems in	
CO2	Apply the Variational principles to real physical problems and interpret the results.		
CO3		problem-solving skills, language and conventions of ppropriate approximation methods to solve some of the	
CO4	Model mechanical systems, of motion using Lagrange an	both in inertial and rotating frames, and setup equation nd Hamilton equations.	
CO5	Set up and solve the approp checks on the answer to cate	riate mathematical equations, and make quick and easy ch simple mistakes.	

Seme	ster	Ι
Cours	se Code and Course Name	MSPH 105: Quantum Mechanics
Cours	se Outcomes	
CO1	1 1 1	and principles of quantum physics and solve the standard systems with both analytical and numerical the results.
CO2	Relate the matrix formalism that formalism.	to the use of basis states, and solve simple problems in
CO3	Test the theory of angular selected problems in quantum	momentum and many particle physics through some m mechanics
CO4	Anticipate the use of commu	tation relations to explain the outcome of measurements
CO5		ies, language and conventions of quantum physics with nethods to solve some of the real-world problems

Semes	ster	Ι
Cours	se Code and Course Name	MSPH 107: Applied Optics
Cours	Course Outcomes:- After the completion of the course student will be able to:	
CO1	Describe the phenomenon of wave propagation in different geometries of waveguides.	
CO2	Use the concept of Diffraction and its significance.	
CO3	Describe Fourier optics and Holography.	
CO4	Analyze the concept of Coherence.	
CO5	Describe the concept of Interferometry.	

Semes	ster	Ι
Cours	se Code and Course Name	MSPH 109: Electronics
Cours	se Outcomes	
CO1		of semiconductors including the band gap, charge g and charge carrier injection/excitation.
CO2	5	of various electronic devices like diode, transistor etc., yse the various circuit configurations of BJT and FET.
CO3	Design circuits for various m design of circuits for Voltag	athematical operations using Op-Amps and illustrate the e regulations.
CO4	Explain the working and des flops, registers and counters	ign of various encoder/decoders, multiplexers, flip-
CO5	Analyse, design and implem	ent sequential logic circuits for various applications.

COs Second Semester Courses MSc Physics

Semes	ter	П
Cours	e code and Course Name	MSPH 102: Advanced Quantum Mechanics
Cours	e Outcomes	I
CO1	Obtain the working know quantum mechanics	vledge of four vector space in context to relativistic
CO2	· · · ·	s and principles of relativistic quantum mechanical Gordon equation and Dirac equation
CO3	Deduce the classical and que and related concepts	uantum field equation and describe second quantization
CO4	Explain the formalism of the Feynman graphs for different sectors.	relativistic quantum field theory. Draw and understand fferent interactions
CO5	Apply the language and understand the quantum the	conventions of relativistic quantum mechanics to eory of radiation

Semeste	er	П	
Course code and Course Name		MSPH 104: Statistical Mechanics	
Course	Course Outcomes		
CO 1	Apply the knowledge of fu probability distributions, a	Indamental concepts such as phase space, ensembles, nd partition functions.	
CO 2	Apply statistical methods many particles, such as ga	to describe the behaviour of large systems composed of ses, liquids, and solids.	
CO 3	0 1	of analyzing various quantum systems, including ideal d solids, using quantum statistical mechanics	
CO 4	including deviations from	standing of non-ideal behaviour in physical systems, ideal gas behaviour, interactions between particles, and ors such as pressure and temperature.	
CO 5	11 .	such as fluctuation-dissipation theorem, correlation tra analysis, to study and quantify fluctuations in	

Semest	er	П
Course	code and Course Name	MSPH 106: Computational Methods
Course	Course Outcomes	
CO1	To develop the ability to numerical form	approximate the complex problem into well-known
CO2	1 1	halyse the variety of errors involved in the problem realize the accuracy of complex solutions
CO3		ing skill to implement the various numerical algorithms equations, data prediction using interpolation and
CO4	1	umerical differentiation, integration and differential methods related to multi-disciplinary complex
CO5	To use the achieved knowl project related activities	edge of this course to design and solve the major-

		п
Semest	ter	
Course	e code and Course Name	MSPH 108: Electrodynamics
Course	e Outcomes	
CO1	To Understand and analyse	e Maxwell Equations and its applications
CO2	To know the Propagation,	reflection, and transmittance of EM waves
CO3	To Evaluate and create rela	ativistic formulation of equations of electrodynamics
CO4	To Analyse the Motion/Dy	vnamics of Charge particle in electromagnetic field
CO5	Application of equations o as radiation	f electrodynamics in generation/creation of EM wave

Semes	ster	П
Course code and Course Name		MSPH 110: Solid State Physics
Cours	se Outcomes	I
CO1	To create basic knowledge of phenomena, reciprocal lattic	of crystal systems, spatial symmetries, diffraction
CO2	1	ructure factor, scattering, structural analysis and c, engineering and technological aspect of materials
CO3		interatomic forces, bonds, dislocations and
CO4	To gain knowledge of free electron theory, periodic potentials, band structures, effective mass and importance of Kronig-Penny model	
CO5	To impart the knowledge, pr materials and their industria	rinciple of magnetism and superconductivity of l and social applications